4,300 research outputs found
Propagating and evanescent internal waves in a deep ocean model
We present experimental and computational studies of the propagation of
internal waves in a stratified fluid with an exponential density profile that
models the deep ocean. The buoyancy frequency profile (proportional to
the square root of the density gradient) varies smoothly by more than an order
of magnitude over the fluid depth, as is common in the deep ocean. The
nonuniform stratification is characterized by a turning depth , where
is equal to the wave frequency and .
Internal waves reflect from the turning depth and become evanescent below the
turning depth. The energy flux below the turning depth is shown to decay
exponentially with a decay constant given by , which is the horizontal
wavenumber at the turning depth. The viscous decay of the vertical velocity
amplitude of the incoming and reflected waves above the turning depth agree
within a few percent with a previously untested theory for a fluid of arbitrary
stratification [Kistovich and Chashechkin, J. App. Mech. Tech. Phys. 39,
729-737 (1998)].Comment: 13 pages, 4 figures, 4 table
Geometric triangulations and highly twisted links
It is conjectured that every cusped hyperbolic 3-manifold admits a geometric
triangulation, i.e. it is decomposed into positive volume ideal hyperbolic
tetrahedra. Here, we show that sufficiently highly twisted knots admit a
geometric triangulation. In addition, by extending work of Gueritaud and
Schleimer, we also give quantified versions of this result for infinite
families of examples.Comment: 38 pages, 21 figure
Orbital liquid in three dimensional Mott insulator:
We present a theory of spin and orbital states in Mott insulator .
The spin-orbital superexchange interaction between ions in cubic
crystal suffers from a pathological degeneracy of orbital states at classical
level. Quantum effects remove this degeneracy and result in the formation of
the coherent ground state, in which the orbital moment of level is
fully quenched. We find a finite gap for orbital excitations. Such a disordered
state of local degrees of freedom on unfrustrated, simple cubic lattice is
highly unusual. Orbital liquid state naturally explains observed anomalies of
.Comment: 5 pages, 3 figure
Simple and scalable growth of AgCl nanorods by plasma-assisted strain relaxation on flexible polymer substrates
Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl 2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%. ? The Author(s) 2017.114Ysciescopu
Bubble formation in potential
Scalar field theory with an asymmetric potential is studied at zero
temperature and high-temperature for potential. The equations of
motion are solved numerically to obtain O(4) spherical symmetric and O(3)
cylindrical symmetric bounce solutions. These solutions control the rates for
tunneling from the false vacuum to the true vacuum by bubble formation. The
range of validity of the thin-wall approximation (TWA) is investigated. An
analytical solution for the bounce is presented, which reproduces the action in
the thin-wall as well as the thick-wall limits.Comment: 22 pag
Method of extending hyperfine coherence times in Pr^3+:Y_2SiO_5
In this letter we present a method for increasing the coherence time of
praseodymium hyperfine ground state transitions in Pr^3+:Y_2SiO_5 by the
application of a specific external magnetic field. The magnitude and angle of
the external field is applied such that the Zeeman splitting of a hyperfine
transition is at a critical point in three dimensions, making the first order
Zeeman shift vanishingly small for the transition. This reduces the influence
of the magnetic interactions between the praseodymium ions and the spins in the
host lattice on the transition frequency. Using this method a phase memory time
of 82ms was observed, a value two orders of magnitude greater than previously
reported. It is shown that the residual dephasing is amenable quantum error
correction
Two-Dimensional Spectroscopy of Extended Molecular Systems: Applications to Energy Transport and Relaxation in an α-Helix
A simulation study of the coupled dynamics of amide I and amide II vibrations in an α-helix dissolved in water shows that two-dimensional (2D) infrared spectroscopy may be used to disentangle the energy transport along the helix through each of these modes from the energy relaxation between them. Time scales for both types of processes are obtained. Using polarization-dependent 2D spectroscopy is an important ingredient in the method we propose. The method may also be applied to other two-band systems, both in the infrared (collective vibrations) and the visible (excitons) parts of the spectrum.
Dealing with care disruption in High and Intensive Care wards:From difficult patients to difficult situations
High and Intensive Care is a relatively new care model in Dutch mental health care for clinical admissions. One of the goals is to keep the admission short. For some patients, this goal is not realized, which results in a long-term admission. Often, this is experienced as a disruption. Disruptions in care processes are frequently defined in terms of patient characteristics. Yet, it may be that other factors play a role. The aim of this study is to gain better insight into the perceptions of care professionals of what is characteristic for disruptions at High and Intensive Care wards and how professionals can deal with these. Qualitative research was performed by means of semi-structured interviews and a focus group with professionals. Results show that a focus on patient characteristics is too narrow and that other factors also play an important role. These factors include challenges in the relation between professionals and the patient, a divided team, and a lack of collaboration with ambulatory care. In order to deal with these factors, professionals should invest in the relationship with the patient, identify destructive team processes early, and improve communication with ambulatory care. It is recommended to develop a monitoring tool that includes all these factors. Another recommendation is to organize structured reflection on dilemmas experienced in care. In conclusion, this study shows the importance of going beyond patient characteristics in order to better understand, identify, and deal with disruption at High and Intensive Care wards
- …