67 research outputs found
CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC- Expressing Macrophages
Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we examine the role of CD82/ KAI1 in niche-mediated LT-HSC maintenance. We found that CD82/ KAI1 is expressed predominantly on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs). In Cd82 +/-/+/- mice, LTHSCs were selectively lost as they exited from quiescence and differentiated. Mechanistically, CD82based TGF-b1/ Smad3 signaling leads to induction of CDK inhibitors and cell-cycle inhibition. The CD82 binding partner DARC/ CD234 is expressed on macrophages and stabilizes CD82 on LT-HSCs, promoting their quiescence. When DARC + BMmacrophages were ablated, the level of surface CD82 on LT-HSCs decreased, leading to cell-cycle entry, proliferation, and differentiation. A similar interaction appears to be relevant for human HSPCs. Thus, CD82 is a functional surface marker of LT-HSCs that maintains quiescence through interaction with DARC-expressing macrophages in the BM stem cell niche.113525Ysciescopu
Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats
Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalanceยฎ SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5โmg/kg loperamide was intraperitoneally administered twice a day for 7โdays to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14โdays. The probiotics were administered 0.5โmL at concentrations of 2โรโ108โCFU/mL (G1), 2โรโ109โCFU/mL (G2), and 2โรโ1010โCFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora
High-quantum yield alloy-typed core/shell CdSeZnS/ZnS quantum dots for bio-applications
Abstract
Background
Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application.
Results
In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs). The structure of the alloy QDs was confirmed using time-of-flight medium-energy ion scattering spectroscopy. The alloy QDs exhibited strong fluorescence and a high QY of 98.0%. After hydrophilic surface modification, the alloy QDs exhibited a QY of 84.7%, which is 1.5 times higher than that of MQDs. The QY was 77.8% after the alloy QDs were conjugated with folic acid (FA). Alloy QDs and MQDs, after conjugation with FA, were successfully used for targeting human KB cells. The alloy QDs exhibited a stronger fluorescence signal than MQD; these signals were retained in the popliteal lymph node area for 24h.
Conclusion
The alloy QDs maintained a higher QY in hydrophilization for biological applications than MQDs. And also, alloy QDs showed the potential as nanoprobes for highly sensitive bioimaging analysis.
Graphical Abstrac
Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps
Abstract
Background
To take advantages, such as multiplex capacity, non-photobleaching property, and high sensitivity, of surface-enhanced Raman scattering (SERS)-based in vivo imaging, development of highly enhanced SERS nanoprobes in near-infrared (NIR) region is needed. A well-controlled morphology and biocompatibility are essential features of NIR SERS nanoprobes. Gold (Au)-assembled nanostructures with controllable nanogaps with highly enhanced SERS signals within multiple hotspots could be a breakthrough.
Results
Au-assembled silica (SiO2) nanoparticles (NPs) (SiO2@Au@Au NPs) as NIR SERS nanoprobes are synthesized using the seed-mediated growth method. SiO2@Au@Au NPs using six different sizes of Au NPs (SiO2@Au@Au50โSiO2@Au@Au500) were prepared by controlling the concentration of Au precursor in the growth step. The nanogaps between Au NPs on the SiO2 surface could be controlled from 4.16 to 0.98nm by adjusting the concentration of Au precursor (hence increasing Au NP sizes), which resulted in the formation of effective SERS hotspots. SiO2@Au@Au500 NPs with a 0.98-nm gap showed a high SERS enhancement factor of approximately 3.8โรโ106 under 785-nm photoexcitation. SiO2@Au@Au500 nanoprobes showed detectable in vivo SERS signals at a concentration of 16ฮผg/mL in animal tissue specimen at a depth of 7mm. SiO2@Au@Au500 NPs with 14 different Raman label compounds exhibited distinct SERS signals upon subcutaneous injection into nude mice.
Conclusions
SiO2@Au@Au NPs showed high potential for in vivo applications as multiplex nanoprobes with high SERS sensitivity in the NIR region.
Graphical Abstrac
Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets
An apparatus for generating atmospheric pressure plasma (APP) jet was used to investigate the inactivation of Listeria monocytogenes on the surface of agar plates and slices of cooked chicken breast and ham. He, N(2) (both 7 L/min), and mixtures of each with O(2) (0.07 L/min) were used to produce the plasma jets. After treatment for 2 min with APP jets of He, He + O(2), N(2), or N(2) + O(2), the numbers of L monocytogenes on agar plates were reduced by 0.87, 4.19, 4.26, and 7.59 log units, respectively. Similar treatments reduced the L monocytogenes inoculated onto sliced chicken breast and ham by 1.37 to 4.73 and 1.94 to 6.52 log units, respectively, according to the input gas used with the N(2) + O(2) mixture being the most effective. Most APP jets reduced the numbers of aerobic bacteria on the meat surfaces to <10(2) CFU/g, and the numbers remained below that level of detection after storage at 10 degrees C for 7 days. The results indicate that APP jets are effective for the inactivation of L. monocytogenes on sliced meats and for prolonging the shelf-life of such foods. (C) 2011 Elsevier Ltd. All rights reserved.N
Quality evaluation of sliced and pizza cheeses treated by gamma and electron beam irradiation
This study was conducted to evaluate and compare the quality changes of commercial sliced and pizza cheeses processed by gamma and electron beam irradiation. The L*-value of sliced and pizza cheeses decreased and the a*-value decreased only in pizza cheese by both irradiation sources. There was no change in pH. There was no difference in 2-thiobarbituric acid reactive substances (TBARS) value between non-irradiated and irradiated samples at a dose of 3 kGy or less (p<0.05). However, both irradiation sources resulted in increased TBARS value in sliced and pizza cheeses at 5 kGy. Sensory evaluation revealed that irradiation influenced odor, taste and overall acceptability of both cheeses and may cause the limitation of consumers' acceptance for irradiated cheese products. Results indicate that both gamma and electron beam irradiations with less than 3 kGy may not influence significantly the physicochemical quality of sliced and pizza cheeses. However, to meet a market requirement, a method to overcome the sensory deterioration of cheeses should be developed and applied.Y
Effect of Atmospheric Pressure Plasma Jet on Inactivation of Listeria monocytogenes, Quality, and Genotoxicity of Cooked Egg White and Yolk
The objective of this study was to evaluate the effects of an atmospheric pressure plasma (APP) jet on L. monocytogenes inactivation, quality characteristics, and genotoxicological safety of cooked egg white and yolk. APP treatment using He gas resulted in a 5 decimal reduction in the number of L. monocytogenes in cooked egg white, whereas that using He+O2, N2,and N2+O2 decreased the number further, and to undetectable levels. All treatments of cooked egg yolk resulted in undetectable levels of inoculated L. monocytogenes. There were no viable cells of total aerobic bacteria after APP treatment on day 0 while the control showed approximately 3-4 Log CFU/g. On day 7, the numbers of total aerobic bacteria had increased by approximately 3 log cycles in cooked egg white, but there were no viable cells in cooked egg yolk after 2 min of APP jet. APP treatment decreased the L*-values of cooked egg white and yolk significantly on day 0. No significant sensory differences were found among the cooked egg white samples, whereas significant reductions in flavor, taste, and overall acceptability were found in cooked egg yolks treated with APP jets. SOS chromotest did not reveal the presence of genotoxic products following APP treatments of cooked egg white and yolk. Therefore, it can be concluded that APP jets can be used as a non-thermal means to enhance the safety and extend the shelf-life of cooked egg white and yolk.Y
Microbiological Characteristics of Gouda Cheese Manufactured with Pasteurized and Raw Milk during Ripening Using Next Generation Sequencing
Gouda cheese, one of most popular cheeses in the Korea, has been produced from only pasteurized milk in Korean dairy farms. Recently, it has become legally possible to produce ripened cheese manufactured with raw milk in Korea. In the present study, we investigated the physico-chemical and microbiological characteristics of Gouda cheese manufactured with raw (R-GC) or pasteurized milk (P-GC) during manufacturing and ripening. Particularly, this study characterized the bacterial community structure of two cheese types, which are produced without pasteurization during ripening based on next generation sequencing of 16S rRNA gene amplicons. During ripening, protein and fat content increased slightly, whereas moisture content decreased in both P-GC and R-GC. At the 6 wk of ripening, R-GC became softer and smoother and hence, the values of hardness and gumminess, chewiness in R-GC was lower than that of P-GC. Metagenomic analysis revealed that the bacterial genera used a starter cultures, namely Lactococcus and Leuconostoc were predominant in both P-GC and R-GC. Moreover, in R-GC, the proportion of coliform bacteria such as Escherichia, Leclercia, Raoultella, and Pseudomonas were detected initially but not during ripening. Taken together, our finding indicates the potential of manufacturing with Gouda cheese from raw milk and the benefits of next generation sequencing for microbial community composition during cheese ripening.N
Evaluation of a Dielectric Barrier Discharge Plasma System for Inactivating Pathogens on Cheese Slices
The objective of this study was to evaluate the potential use of a dielectric barrier discharge(DBD) plasma system to improve microbial safety of sliced cheese. The atmospheric pressure plasma(APP) effect on visual appearance and a sensory evaluation were also carried out. The number of Escherichia coli inoculated on cheese slices decreased by 0.09, 0.47, 1.16 and 1.47 log cycles with helium(4 liters/min [lpm]) and 0.05, 0.87, 1.89 and 1.98 log cycles with He/O2 mixture(4 lpm/15 standard cubic centimeters per minute), after being treated with plasma for 1, 5, 10, and 15 min, respectively. Significant reductions were also observed in Staphylococcus aureus inoculated onto cheese slices ranging from 0.05 to 0.45 log cycles with He and from 0.08 to 0.91 log cycles with He/O2-treated samples, respectively. Adding oxygen resulted in a significant increase in inactivation of both pathogens. No visible change in the plasma-treated cheese slices was observed even though the instrumental analysis showed a significant decrease in the L*-value and an increase in the b*-value. The cheese slices were damaged after 10 and 15 min of plasma treatment. In addition, significant reductions in sensory quality including flavor, odor, and acceptability of plasma-treated cheese slices were observed. The results indicate that the DBD plasma system has potential for use in sanitizing food products, although the effect was limited. Further development of the APP system is necessary for industrial use.N
- โฆ