1,633 research outputs found
Cosmological Parameter Extraction from the First Season of Observations with DASI
The Degree Angular Scale Interferometer (\dasi) has measured the power
spectrum of the Cosmic Microwave Background anisotropy over the range of
spherical harmonic multipoles 100<l<900. We compare this data, in combination
with the COBE-DMR results, to a seven dimensional grid of adiabatic CDM models.
Adopting the priors h>0.45 and 0.0<=tau_c<=0.4, we find that the total density
of the Universe Omega_tot=1.04+/-0.06, and the spectral index of the initial
scalar fluctuations n_s=1.01+0.08-0.06, in accordance with the predictions of
inflationary theory. In addition we find that the physical density of baryons
Omega_b.h^2=0.022+0.004-0.003, and the physical density of cold dark matter
Omega_cdm.h^2=0.14+/-0.04. This value of Omega_b.h^2 is consistent with that
derived from measurements of the primordial abundance ratios of the light
elements combined with big bang nucleosynthesis theory. Using the result of the
HST Key Project h=0.72+/-0.08 we find that Omega_t=1.00+/-0.04, the matter
density Omega_m=0.40+/-0.15, and the vacuum energy density
Omega_lambda=0.60+/-0.15. (All 68% confidence limits.)Comment: 7 pages, 4 figures, minor changes in response to referee comment
Modulator noise suppression in the LISA Time-Delay Interferometric combinations
We previously showed how the measurements of some eighteen time series of
relative frequency or phase shifts could be combined (1) to cancel the phase
noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial
motions of the six optical benches, and (3) to remove the phase noise of the
onboard reference oscillators required to track the photodetector fringes, all
the while preserving signals from passinggravitational waves. Here we analyze
the effect of the additional noise due to the optical modulators used for
removing the phase fluctuations of the onboard reference oscillators. We use a
recently measured noise spectrum of an individual modulator to quantify the
contribution of modulator noise to the first and second-generation Time-Delay
Interferometric (TDI) combinations as a function of the modulation frequency.
We show that modulator noise can be made smaller than the expected proof-mass
acceleration and optical-path noises if the modulation frequencies are larger
than MHz in the case of the unequal-arm Michelson TDI combination
, GHz for the Sagnac TDI combination , and
MHz for the symmetrical Sagnac TDI combination . These
modulation frequencies are substantially smaller than previously estimated and
may lead to less stringent requirements on the LISA's oscillator noise
calibration subsystem.Comment: 17 pages, 5 figures. Submitted to: Phys. Rev. D 1
Archeops: an instrument for present and future cosmology
Archeops is a balloon-borne instrument dedicated to measure the cosmic
microwave background (CMB) temperature anisotropies. It has, in the millimetre
domain (from 143 to 545 GHz), a high angular resolution (about 10 arcminutes)
in order to constrain high l multipoles, as well as a large sky coverage
fraction (30%) in order to minimize the cosmic variance. It has linked, before
WMAP, Cobe large angular scales to the first acoustic peak region. From its
results, inflation motivated cosmologies are reinforced with a flat Universe
(Omega_tot=1 within 3%). The dark energy density and the baryonic density are
in very good agreement with other independent estimations based on supernovae
measurements and big bang nucleosynthesis. Important results on galactic dust
emission polarization and their implications for Planck are also addressed.Comment: 4 pages, 2 figures, to appear in Proceedings of the Multiwavelength
Cosmology Conference, June 2003, Mykonos Island, Greec
DASI First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum
We present measurements of anisotropy in the Cosmic Microwave Background
(CMB) from the first season of observations with the Degree Angular Scale
Interferometer (DASI). The instrument was deployed at the South Pole in the
austral summer 1999--2000, and made observations throughout the following
austral winter. We have measured the angular power spectrum of the CMB in the
range 100<l<900 with high signal-to-noise. In this paper we review the
formalism used in the analysis, in particular the use of constraint matrices to
project out contaminants such as ground and point source signals, and to test
for correlations with diffuse foreground templates. We find no evidence of
foregrounds other than point sources in the data, and find a maximum likelihood
temperature spectral index beta = -0.1 +/- 0.2 (1 sigma), consistent with CMB.
We detect a first peak in the power spectrum at l approx 200, in agreement with
previous experiments. In addition, we detect a peak in the power spectrum at l
approx 550 and power of similar magnitude at l approx 800 which are consistent
with the second and third harmonic peaks predicted by adiabatic inflationary
cosmological models.Comment: 8 pages, 1 figure, minor changes in response to referee comment
Anisotropy in the Cosmic Microwave Background at Degree Angular Scales: Python V Results
Observations of the microwave sky using the Python telescope in its fifth
season of operation at the Amundsen-Scott South Pole Station in Antarctica are
presented. The system consists of a 0.75 m off-axis telescope instrumented with
a HEMT amplifier-based radiometer having continuum sensitivity from 37-45 GHz
in two frequency bands. With a 0.91 deg x 1.02 deg beam the instrument fully
sampled 598 deg^2 of sky, including fields measured during the previous four
seasons of Python observations. Interpreting the observed fluctuations as
anisotropy in the cosmic microwave background, we place constraints on the
angular power spectrum of fluctuations in eight multipole bands up to l ~ 260.
The observed spectrum is consistent with both the COBE experiment and previous
Python results. There is no significant contamination from known foregrounds.
The results show a discernible rise in the angular power spectrum from large (l
~ 40) to small (l ~ 200) angular scales. The shape of the observed power
spectrum is not a simple linear rise but has a sharply increasing slope
starting at l ~ 150.Comment: 5 page
Late time cosmic acceleration from vacuum Brans-Dicke theory in 5D
We show that the scalar-vacuum Brans-Dicke equations in 5D are equivalent to
Brans-Dicke theory in 4D with a self interacting potential and an effective
matter field. The cosmological implication, in the context of FRW models, is
that the observed accelerated expansion of the universe comes naturally from
the condition that the scalar field is not a ghost, i.e., . We
find an effective matter-dominated 4D universe which shows accelerated
expansion if . We study the question of whether
accelerated expansion can be made compatible with large values of ,
within the framework of a 5D scalar-vacuum Brans-Dicke theory with variable,
instead of constant, parameter . In this framework, and based on a
general class of solutions of the field equations, we demonstrate that
accelerated expansion is incompatible with large values of .Comment: In V2 the summary section is expanded. To be published in Classical
and Quantum Gravity
The Santa Fe Light Cone Simulation Project: II. The Prospects for Direct Detection of the WHIM with SZE Surveys
Detection of the Warm-Hot Intergalactic Medium (WHIM) using Sunyaev-Zeldovich
effect (SZE) surveys is an intriguing possibility, and one that may allow
observers to quantify the amount of "missing baryons" in the WHIM phase. We
estimate the necessary sensitivity for detecting low density WHIM gas with the
South Pole Telescope (SPT) and Planck Surveyor for a synthetic 100 square
degree sky survey. This survey is generated from a very large, high dynamic
range adaptive mesh refinement cosmological simulation performed with the Enzo
code. We find that for a modest increase in the SPT survey sensitivity (a
factor of 2-4), the WHIM gas makes a detectable contribution to the integrated
sky signal. For a Planck-like satellite, similar detections are possible with a
more significant increase in sensitivity (a factor of 8-10). We point out that
for the WHIM gas, the kinematic SZE signal can sometimes dominate the thermal
SZE where the thermal SZE decrement is maximal (150 GHz), and that using the
combination of the two increases the chance of WHIM detection using SZE
surveys. However, we find no evidence of unique features in the thermal SZE
angular power spectrum that may aid in its detection. Interestingly, there are
differences in the power spectrum of the kinematic SZE, which may not allow us
to detect the WHIM directly, but could be an important contaminant in
cosmological analyses of the kSZE-derived velocity field. Corrections derived
from numerical simulations may be necessary to account for this contamination.Comment: 9 pages, submitted to Astrophysical Journa
- …