3 research outputs found

    Mitigating the Effects of Au-Al Intermetallic Compounds Due to High-Temperature Processing of Surface Electrode Ion Traps

    Full text link
    Stringent physical requirements need to be met for the high performing surface-electrode ion traps used in quantum computing, sensing, and timekeeping. In particular, these traps must survive a high temperature environment for vacuum chamber preparation and support high voltage rf on closely spaced electrodes. Due to the use of gold wire bonds on aluminum pads, intermetallic growth can lead to wire bond failure via breakage or high resistance, limiting the lifetime of a trap assembly to a single multi-day bake at 200∘^{\circ}C. Using traditional thick metal stacks to prevent intermetallic growth, however, can result in trap failure due to rf breakdown events. Through high temperature experiments we conclude that an ideal metal stack for ion traps is Ti20nm/Pt100nm/Au250nm which allows for a bakeable time of roughly 86 days without compromising the trap voltage performance. This increase in the bakable lifetime of ion traps will remove the need to discard otherwise functional ion traps when vacuum hardware is upgraded, which will greatly benefit ion trap experiments.Comment: 9 Pages, 10 figure

    Fault Localization in a Microfabricated Surface Ion Trap using Diamond Nitrogen-Vacancy Center Magnetometry

    Full text link
    As quantum computing hardware becomes more complex with ongoing design innovations and growing capabilities, the quantum computing community needs increasingly powerful techniques for fabrication failure root-cause analysis. This is especially true for trapped-ion quantum computing. As trapped-ion quantum computing aims to scale to thousands of ions, the electrode numbers are growing to several hundred with likely integrated-photonic components also adding to the electrical and fabrication complexity, making faults even harder to locate. In this work, we used a high-resolution quantum magnetic imaging technique, based on nitrogen-vacancy (NV) centers in diamond, to investigate short-circuit faults in an ion trap chip. We imaged currents from these short-circuit faults to ground and compared to intentionally-created faults, finding that the root-cause of the faults was failures in the on-chip trench capacitors. This work, where we exploited the performance advantages of a quantum magnetic sensing technique to troubleshoot a piece of quantum computing hardware, is a unique example of the evolving synergy between emerging quantum technologies to achieve capabilities that were previously inaccessible.Comment: 8 pages main text; 2 pages supplemen
    corecore