2,089 research outputs found
The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitised solar cells
Improving the efficiency of p-type dye-sensitized solar cells (DSCs) is an important part of the development of high performance tandem DSCs. The optimization of the conversion efficiency of p-DSCs could make a considerable contribution in the improvement of solar cells at a molecular level. Nickel oxide is the most widely used material in p-DSCs, due to its ease of preparation, chemical and structural stability, and electrical properties. However, improvement of the quality and conductivity of NiO based photocathodes needs to be achieved to bring further improvements to the solar cell efficiency. The subject of this review is to consider the effect of the preparation of NiO surfaces on their efficiency as photocathodes. (C) 2015 Elsevier B.V. All rights reserved
Quantized Scaling of Growing Surfaces
The Kardar-Parisi-Zhang universality class of stochastic surface growth is
studied by exact field-theoretic methods. From previous numerical results, a
few qualitative assumptions are inferred. In particular, height correlations
should satisfy an operator product expansion and, unlike the correlations in a
turbulent fluid, exhibit no multiscaling. These properties impose a
quantization condition on the roughness exponent and the dynamic
exponent . Hence the exact values for two-dimensional
and for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure
Non-perturbative renormalization of the KPZ growth dynamics
We introduce a non-perturbative renormalization approach which identifies
stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of
rough surfaces. The usual limitations of real space methods to deal with
anisotropic (self-affine) scaling are overcome with an indirect functional
renormalization. The roughness exponent is computed for dimensions
to 8 and it results to be in very good agreement with the available
simulations. No evidence is found for an upper critical dimension. We discuss
how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let
Topological relaxation of entangled flux lattices: Single vs collective line dynamics
A symbolic language allowing to solve statistical problems for the systems
with nonabelian braid-like topology in 2+1 dimensions is developed. The
approach is based on the similarity between growing braid and "heap of colored
pieces". As an application, the problem of a vortex glass transition in
high-T_c superconductors is re-examined on microscopic levelComment: 4 pages (revtex), 4 figure
Universality and Crossover of Directed Polymers and Growing Surfaces
We study KPZ surfaces on Euclidean lattices and directed polymers on
hierarchical lattices subject to different distributions of disorder, showing
that universality holds, at odds with recent results on Euclidean lattices.
Moreover, we find the presence of a slow (power-law) crossover toward the
universal values of the exponents and verify that the exponent governing such
crossover is universal too. In the limit of a 1+epsilon dimensional system we
obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let
Upper critical dimension, dynamic exponent and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation
We study the mode-coupling approximation for the KPZ equation in the strong
coupling regime. By constructing an ansatz consistent with the asymptotic forms
of the correlation and response functions we determine the upper critical
dimension d_c=4, and the expansion z=2-(d-4)/4+O((4-d)^2) around d_c. We find
the exact z=3/2 value in d=1, and estimate the values 1.62, 1.78 for z, in
d=2,3. The result d_c=4 and the expansion around d_c are very robust and can be
derived just from a mild assumption on the relative scale on which the response
and correlation functions vary as z approaches 2.Comment: RevTex, 4 page
An Exactly Solved Model of Three Dimensional Surface Growth in the Anisotropic KPZ Regime
We generalize the surface growth model of Gates and Westcott to arbitrary
inclination. The exact steady growth velocity is of saddle type with principal
curvatures of opposite sign. According to Wolf this implies logarithmic height
correlations, which we prove by mapping the steady state of the surface to
world lines of free fermions with chiral boundary conditions.Comment: 9 pages, REVTEX, epsf, 3 postscript figures, submitted to J. Stat.
Phys, a wrong character is corrected in eqs. (31) and (32
Numerical Results for the Ground-State Interface in a Random Medium
The problem of determining the ground state of a -dimensional interface
embedded in a -dimensional random medium is treated numerically. Using a
minimum-cut algorithm, the exact ground states can be found for a number of
problems for which other numerical methods are inexact and slow. In particular,
results are presented for the roughness exponents and ground-state energy
fluctuations in a random bond Ising model. It is found that the roughness
exponent , with the related energy
exponent being , in ,
respectively. These results are compared with previous analytical and numerical
estimates.Comment: 10 pages, REVTEX3.0; 3 ps files (separate:tar/gzip/uuencoded) for
figure
Levy-Nearest-Neighbors Bak-Sneppen Model
We study a random neighbor version of the Bak-Sneppen model, where "nearest
neighbors" are chosen according to a probability distribution decaying as a
power-law of the distance from the active site, P(x) \sim |x-x_{ac
}|^{-\omega}. All the exponents characterizing the self-organized critical
state of this model depend on the exponent \omega. As \omega tends to 1 we
recover the usual random nearest neighbor version of the model. The pattern of
results obtained for a range of values of \omega is also compatible with the
results of simulations of the original BS model in high dimensions. Moreover,
our results suggest a critical dimension d_c=6 for the Bak-Sneppen model, in
contrast with previous claims.Comment: To appear on Phys. Rev. E, Rapid Communication
Energy Barriers for Flux Lines in 3 Dimensions
I determine the scaling behavior of the free energy barriers encountered by a
flux line in moving through a three-dimensional random potential. A combination
of numerical simulations and analytic arguments suggest that these barriers
scale with the length of the line in the same way as the fluctuation in the
free energy.Comment: 12 pages Latex, 4 postscript figures tarred, compressed, uuencoded
using `uufiles', coming with a separate fil
- …