2,089 research outputs found

    The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitised solar cells

    Get PDF
    Improving the efficiency of p-type dye-sensitized solar cells (DSCs) is an important part of the development of high performance tandem DSCs. The optimization of the conversion efficiency of p-DSCs could make a considerable contribution in the improvement of solar cells at a molecular level. Nickel oxide is the most widely used material in p-DSCs, due to its ease of preparation, chemical and structural stability, and electrical properties. However, improvement of the quality and conductivity of NiO based photocathodes needs to be achieved to bring further improvements to the solar cell efficiency. The subject of this review is to consider the effect of the preparation of NiO surfaces on their efficiency as photocathodes. (C) 2015 Elsevier B.V. All rights reserved

    Quantized Scaling of Growing Surfaces

    Full text link
    The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact field-theoretic methods. From previous numerical results, a few qualitative assumptions are inferred. In particular, height correlations should satisfy an operator product expansion and, unlike the correlations in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition on the roughness exponent χ\chi and the dynamic exponent zz. Hence the exact values χ=2/5,z=8/5\chi = 2/5, z = 8/5 for two-dimensional and χ=2/7,z=12/7\chi = 2/7, z = 12/7 for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure

    Non-perturbative renormalization of the KPZ growth dynamics

    Full text link
    We introduce a non-perturbative renormalization approach which identifies stable fixed points in any dimension for the Kardar-Parisi-Zhang dynamics of rough surfaces. The usual limitations of real space methods to deal with anisotropic (self-affine) scaling are overcome with an indirect functional renormalization. The roughness exponent α\alpha is computed for dimensions d=1d=1 to 8 and it results to be in very good agreement with the available simulations. No evidence is found for an upper critical dimension. We discuss how the present approach can be extended to other self-affine problems.Comment: 4 pages, 2 figures. To appear in Phys. Rev. Let

    Topological relaxation of entangled flux lattices: Single vs collective line dynamics

    Full text link
    A symbolic language allowing to solve statistical problems for the systems with nonabelian braid-like topology in 2+1 dimensions is developed. The approach is based on the similarity between growing braid and "heap of colored pieces". As an application, the problem of a vortex glass transition in high-T_c superconductors is re-examined on microscopic levelComment: 4 pages (revtex), 4 figure

    Universality and Crossover of Directed Polymers and Growing Surfaces

    Full text link
    We study KPZ surfaces on Euclidean lattices and directed polymers on hierarchical lattices subject to different distributions of disorder, showing that universality holds, at odds with recent results on Euclidean lattices. Moreover, we find the presence of a slow (power-law) crossover toward the universal values of the exponents and verify that the exponent governing such crossover is universal too. In the limit of a 1+epsilon dimensional system we obtain both numerically and analytically that the crossover exponent is 1/2.Comment: LateX file + 5 .eps figures; to appear on Phys. Rev. Let

    Upper critical dimension, dynamic exponent and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation

    Full text link
    We study the mode-coupling approximation for the KPZ equation in the strong coupling regime. By constructing an ansatz consistent with the asymptotic forms of the correlation and response functions we determine the upper critical dimension d_c=4, and the expansion z=2-(d-4)/4+O((4-d)^2) around d_c. We find the exact z=3/2 value in d=1, and estimate the values 1.62, 1.78 for z, in d=2,3. The result d_c=4 and the expansion around d_c are very robust and can be derived just from a mild assumption on the relative scale on which the response and correlation functions vary as z approaches 2.Comment: RevTex, 4 page

    An Exactly Solved Model of Three Dimensional Surface Growth in the Anisotropic KPZ Regime

    Full text link
    We generalize the surface growth model of Gates and Westcott to arbitrary inclination. The exact steady growth velocity is of saddle type with principal curvatures of opposite sign. According to Wolf this implies logarithmic height correlations, which we prove by mapping the steady state of the surface to world lines of free fermions with chiral boundary conditions.Comment: 9 pages, REVTEX, epsf, 3 postscript figures, submitted to J. Stat. Phys, a wrong character is corrected in eqs. (31) and (32

    Numerical Results for the Ground-State Interface in a Random Medium

    Get PDF
    The problem of determining the ground state of a dd-dimensional interface embedded in a (d+1)(d+1)-dimensional random medium is treated numerically. Using a minimum-cut algorithm, the exact ground states can be found for a number of problems for which other numerical methods are inexact and slow. In particular, results are presented for the roughness exponents and ground-state energy fluctuations in a random bond Ising model. It is found that the roughness exponent ζ=0.41±0.01,0.22±0.01\zeta = 0.41 \pm 0.01, 0.22 \pm 0.01, with the related energy exponent being θ=0.84±0.03,1.45±0.04\theta = 0.84 \pm 0.03, 1.45 \pm 0.04, in d=2,3d = 2, 3, respectively. These results are compared with previous analytical and numerical estimates.Comment: 10 pages, REVTEX3.0; 3 ps files (separate:tar/gzip/uuencoded) for figure

    Levy-Nearest-Neighbors Bak-Sneppen Model

    Full text link
    We study a random neighbor version of the Bak-Sneppen model, where "nearest neighbors" are chosen according to a probability distribution decaying as a power-law of the distance from the active site, P(x) \sim |x-x_{ac }|^{-\omega}. All the exponents characterizing the self-organized critical state of this model depend on the exponent \omega. As \omega tends to 1 we recover the usual random nearest neighbor version of the model. The pattern of results obtained for a range of values of \omega is also compatible with the results of simulations of the original BS model in high dimensions. Moreover, our results suggest a critical dimension d_c=6 for the Bak-Sneppen model, in contrast with previous claims.Comment: To appear on Phys. Rev. E, Rapid Communication

    Energy Barriers for Flux Lines in 3 Dimensions

    Full text link
    I determine the scaling behavior of the free energy barriers encountered by a flux line in moving through a three-dimensional random potential. A combination of numerical simulations and analytic arguments suggest that these barriers scale with the length of the line in the same way as the fluctuation in the free energy.Comment: 12 pages Latex, 4 postscript figures tarred, compressed, uuencoded using `uufiles', coming with a separate fil
    • …
    corecore