54 research outputs found
High frequency sound in superfluid 3He-B
We present measurements of the absolute phase velocity of transverse and
longitudinal sound in superfluid 3He-B at low temperature, extending from the
imaginary squashing mode to near pair-breaking. Changes in the transverse phase
velocity near pair-breaking have been explained in terms of an order parameter
collective mode that arises from f-wave pairing interactions, the so-called
J=4- mode. Using these measurements, we establish lower bounds on the energy
gap in the B-phase. Measurement of attenuation of longitudinal sound at low
temperature and energies far above the pair-breaking threshold, are in
agreement with the lower bounds set on pair-breaking. Finally, we discuss our
estimations for the strength of the f-wave pairing interactions and the Fermi
liquid parameter, F4s.Comment: 15 pages, 8 figures, accepted to J. Low Temp. Phy
Crystallization of a classical two-dimensional electron system: Positional and orientational orders
Crystallization of a classical two-dimensional one-component plasma
(electrons interacting with the Coulomb repulsion in a uniform neutralizing
positive background) is investigated with a molecular dynamics simulation. The
positional and the orientational correlation functions are calculated for the
first time. We have found an indication that the solid phase has a
quasi-long-range (power-law) positional order along with a long-range
orientational order. This indicates that, although the long-range Coulomb
interaction is outside the scope of Mermin's theorem, the absence of ordinary
crystalline order at finite temperatures applies to the electron system as
well. The `hexatic' phase, which is predicted between the liquid and the solid
phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also
discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne
Magnetoresistance of UPt3
We have performed measurements of the temperature dependence of the
magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic
field along the b axis, the easy magnetization axis. We have confirmed previous
results for transverse magnetoresistance with the current along the c axis, and
report measurements of the longitudinal magnetoresistance with the current
along the b axis. The presence of a linear term in both cases indicates broken
orientational symmetry associated with magnetic order. With the current along
the c axis the linear term appears near 5 K, increasing rapidly with decreasing
temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference
(QFS 2006
Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level
The Pfaffian quantum Hall states, which can be viewed as involving pairing
either of spin-polarized electrons or of composite fermions, are generalized by
finding the exact ground states of certain Hamiltonians with k+1-body
interactions, for all integers k > 0. The remarkably simple wavefunctions of
these states involve clusters of k particles, and are related to correlators of
parafermion currents in two-dimensional conformal field theory. The k=2 case is
the Pfaffian. For k > 1, the quasiparticle excitations of these systems are
expected to possess nonabelian statistics, like those of the Pfaffian. For k=3,
these ground states have large overlaps with the ground states of the (2-body)
Coulomb-interaction Hamiltonian for electrons in the first excited Landau level
at total filling factors \nu=2+3/5, 2+2/5.Comment: 11 pages Revtex in two column format with 4 eps figures included in
the M
Fractional Quantum Hall States of Clustered Composite Fermions
The energy spectra and wavefunctions of up to 14 interacting quasielectrons
(QE's) in the Laughlin nu=1/3 fractional quantum Hall (FQH) state are
investigated using exact numerical diagonalization. It is shown that at
sufficiently high density the QE's form pairs or larger clusters. This
behavior, opposite to Laughlin correlations, invalidates the (sometimes
invoked) reapplication of the composite fermion picture to the individual QE's.
The series of finite-size incompressible ground states are identified at the QE
filling factors nu_QE=1/2, 1/3, 2/3, corresponding to the electron fillings
nu=3/8, 4/11, 5/13. The equivalent quasihole (QH) states occur at nu_QH=1/4,
1/5, 2/7, corresponding to nu=3/10, 4/13, 5/17. All these six novel FQH states
were recently discovered experimentally. Detailed analysis indicates that QE or
QH correlations in these states are different from those of well-known FQH
electron states (e.g., Laughlin or Moore-Read states), leaving the origin of
their incompressibility uncertain. Halperin's idea of Laughlin states of QP
pairs is also explored, but is does not seem adequate.Comment: 14 pages, 9 figures; revision: 1 new figure, some new references,
some new data, title chang
Ergodic properties of a model for turbulent dispersion of inertial particles
We study a simple stochastic differential equation that models the dispersion
of close heavy particles moving in a turbulent flow. In one and two dimensions,
the model is closely related to the one-dimensional stationary Schroedinger
equation in a random delta-correlated potential. The ergodic properties of the
dispersion process are investigated by proving that its generator is
hypoelliptic and using control theory
Study of Percolative Transitions with First-Order Characteristics in the Context of CMR Manganites
The unusual magneto-transport properties of manganites are widely believed to
be caused by mixed-phase tendencies and concomitant percolative processes.
However, dramatic deviations from "standard" percolation have been unveiled
experimentally. Here, a semi-phenomenological description of Mn oxides is
proposed based on coexisting clusters with smooth surfaces, as suggested by
Monte Carlo simulations of realistic models for manganites, also briefly
discussed here. The present approach produces fairly abrupt percolative
transitions and even first-order discontinuities, in agreement with
experiments. These transitions may describe the percolation that occurs after
magnetic fields align the randomly oriented ferromagnetic clusters believed to
exist above the Curie temperature in Mn oxides. In this respect, part of the
manganite phenomenology could belong to a new class of percolative processes
triggered by phase competition and correlations.Comment: 4 pages, 4 eps figure
Persistent edge currents for paired quantum hall states
We study the behavior of the persistent edge current for paired quantum Hall
states on the cylinder. We show that the currents are periodic with the unit
flux . At low temperatures, they exhibit anomalous oscillations in
their flux dependence.The shape of the functions converges to the sawtooth
function periodic with .Comment: RevTex 8 pages. one figure. to appear in Phys.Rev.
Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect
Much of the present day qualitative phenomenology of the fractional quantum
Hall effect can be understood by neglecting the interactions between composite
fermions altogether. For example the fractional quantum Hall effect at
corresponds to filled composite-fermion Landau levels,and
the compressible state at to the Fermi sea of composite fermions.
Away from these filling factors, the residual interactions between composite
fermions will determine the nature of the ground state. In this article, a
model is constructed for the residual interaction between composite fermions,
and various possible states are considered in a variational approach. Our study
suggests formation of composite-fermion stripes, bubble crystals, as well as
fractional quantum Hall states for appropriate situations.Comment: 16 pages, 7 figure
Spin-polarized current amplification and spin injection in magnetic bipolar transistors
The magnetic bipolar transistor (MBT) is a bipolar junction transistor with
an equilibrium and nonequilibrium spin (magnetization) in the emitter, base, or
collector. The low-injection theory of spin-polarized transport through MBTs
and of a more general case of an array of magnetic {\it p-n} junctions is
developed and illustrated on several important cases. Two main physical
phenomena are discussed: electrical spin injection and spin control of current
amplification (magnetoamplification). It is shown that a source spin can be
injected from the emitter to the collector. If the base of an MBT has an
equilibrium magnetization, the spin can be injected from the base to the
collector by intrinsic spin injection. The resulting spin accumulation in the
collector is proportional to , where is the proton
charge, is the bias in the emitter-base junction, and is the
thermal energy. To control the electrical current through MBTs both the
equilibrium and the nonequilibrium spin can be employed. The equilibrium spin
controls the magnitude of the equilibrium electron and hole densities, thereby
controlling the currents. Increasing the equilibrium spin polarization of the
base (emitter) increases (decreases) the current amplification. If there is a
nonequilibrium spin in the emitter, and the base or the emitter has an
equilibrium spin, a spin-valve effect can lead to a giant magnetoamplification
effect, where the current amplifications for the parallel and antiparallel
orientations of the the equilibrium and nonequilibrium spins differ
significantly. The theory is elucidated using qualitative analyses and is
illustrated on an MBT example with generic materials parameters.Comment: 14 PRB-style pages, 10 figure
- …