67 research outputs found

    On the origin of the large scale structures of the universe

    Full text link
    We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter radiation equality, seeded the gravitational development of large scale structures in the, otherwise, homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glass-like or lattice-like. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength.Comment: New section added; final version to appear in Physical Review D; discussion extended and detailed with new calculations to support the claims of the paper; statistical properties of vacuum fluctuations now discussed in the context of FRW flat universe; new important conclussions adde

    Mesoscopic fluctuations of the ground state spin of a small metal particle

    Full text link
    We study the statistical distribution of the ground state spin for an ensemble of small metallic grains, using a random-matrix toy model. Using the Hartree Fock approximation, we find that already for interaction strengths well below the Stoner criterion there is an appreciable probability that the ground state has a finite, nonzero spin. Possible relations to experiments are discussed.Comment: 4 pages, RevTeX; 1 figure included with eps

    Random-Matrix Theory of Quantum Size Effects on Nuclear Magnetic Resonance in Metal Particles

    Full text link
    The distribution function of the local density of states is computed exactly for the Wigner-Dyson ensemble of random Hamiltonians. In the absence of time-reversal symmetry, precise agreement is obtained with the "supersymmetry" theory by Efetov and Prigodin of the NMR lineshape in disordered metal particles. Upon breaking time-reversal symmetry, the variance of the Knight shift in the smallest particles is reduced by a universal factor of 2/3. ***To be published in Physical Review B.****Comment: 4 pages, REVTeX-3.0, 1 postscript figure, INLO-PUB-940819; [2017: figure included in text

    Density of states in the non-hermitian Lloyd model

    Full text link
    We reconsider the recently proposed connection between density of states in the so-called ``non-hermitian quantum mechanics'' and the localization length for a particle moving in random potential. We argue that it is indeed possible to find the localization length from the density of states of a non-hermitian random ``Hamiltonian''. However, finding the density of states of a non-hermitian random ``Hamiltonian'' remains an open problem, contrary to previous findings in the literature.Comment: 6 pages, RevTex, two-column

    Long-range order and low-energy spectrum of diluted 2D quantum AF

    Full text link
    The problem of diluted two-dimensional (2D) quantum antiferromagnet (AF) on a square lattice is studied using spin-wave theory. The influence of impurities on static and dynamic properties is investigated and a good agreement with experiments and Monte Carlo (MC) data is found. The hydrodynamic description of spin-waves breaks down at characteristic wavelengths \Lambda\agt\exp(\frac{const}{x}), xx being an impurity concentration, while the order parameter is free from anomalies. We argue that this dichotomy originates from strong scattering of the low-energy excitations in 2D.Comment: PRL Award received, 4 pages, 3 figure

    Wave Propagation in Stochastic Spacetimes: Localization, Amplification and Particle Creation

    Get PDF
    Here we study novel effects associated with electromagnetic wave propagation in a Robertson-Walker universe and the Schwarzschild spacetime with a small amount of metric stochasticity. We find that localization of electromagnetic waves occurs in a Robertson-Walker universe with time-independent metric stochasticity, while time-dependent metric stochasticity induces exponential instability in the particle production rate. For the Schwarzschild metric, time-independent randomness can decrease the total luminosity of Hawking radiation due to multiple scattering of waves outside the black hole and gives rise to event horizon fluctuations and thus fluctuations in the Hawking temperature.Comment: 26 pages, 1 Postscript figure, submitted to Phys. Rev. D on July 29, 199

    Levy flights in quenched random force fields

    Full text link
    Levy flights, characterized by the microscopic step index f, are for f<2 (the case of rare events) considered in short range and long range quenched random force fields with arbitrary vector character to first loop order in an expansion about the critical dimension 2f-2 in the short range case and the critical fall-off exponent 2f-2 in the long range case. By means of a dynamic renormalization group analysis based on the momentum shell integration method, we determine flows, fixed point, and the associated scaling properties for the probability distribution and the frequency and wave number dependent diffusion coefficient. Unlike the case of ordinary Brownian motion in a quenched force field characterized by a single critical dimension or fall-off exponent d=2, two critical dimensions appear in the Levy case. A critical dimension (or fall-off exponent) d=f below which the diffusion coefficient exhibits anomalous scaling behavior, i.e, algebraic spatial behavior and long time tails, and a critical dimension (or fall-off exponent) d=2f-2 below which the force correlations characterized by a non trivial fixed point become relevant. As a general result we find in all cases that the dynamic exponent z, characterizing the mean square displacement, locks onto the Levy index f, independent of dimension and independent of the presence of weak quenched disorder.Comment: 27 pages, Revtex file, 17 figures in ps format attached, submitted to Phys. Rev.

    Optimal Fluctuations and Tail States of non-Hermitian Operators

    Full text link
    We develop a general variational approach to study the statistical properties of the tail states of a wide class of non-Hermitian operators. The utility of the method, which is a refinement of the instanton approach introduced by Zittartz and Langer, is illustrated in detail by reference to the problem of a quantum particle propagating in an imaginary scalar potential.Comment: 4 pages, 2 figures, to appear in PR

    Transport of magnetoexcitons in single and coupled quantum wells

    Full text link
    The transport relaxation time τ(P)\tau (P) and the mean free path of magnetoexcitons in single and coupled quantum wells are calculated (PP is the magnetic momentum of the magnetoexciton). We present the results for magnetoexciton scattering in a random field due to (i) quantum well width fluctuations, (ii) composite fluctuations and (iii) ionized impurities. The time τ(P)\tau(P) depends nonmonotonously on PP in the case (ii) and in the cases (i), (iii) for D/lD/l smaller than some critical value (DD is the interwell separation, l=c/eHl=\sqrt{\hbar c/eH} is the magnetic length). For D/l1D/l\gg 1 the transport relaxation time increases monotonously with PP. The magnetoexciton mean free path λ(P)\lambda (P) has a maximum at P0P\ne 0 in the cases (i), (iii). It decreases with increasing D/lD/l. The mean free path calculated for the case (ii) may have two maxima. One of them disappears with the variation of the random fields parameters. The maximum of λ(P)\lambda (P) increases with HH for types (i,iii) of scattering processes and decreases in the case (ii).Comment: 13 pages, 8 figures in EPS format; Physica Scripta (in print

    Plasmon Modes and Correlation Functions in Quantum Wires and Hall Bars

    Full text link
    We present microscopic derivations of the one-dimensional low-energy boson effective Hamiltonians of quantum wire and quantum Hall bar systems. The quantum Hall system is distinguished by its spatial separation of oppositely directed electrons. We discuss qualitative differences in the plasmon collective mode dispersions and the ground state correlation functions of the two systems which are consequences of this difference. The slowly-decaying quasi-solid correlations expected in a quantum wire are strongly suppressed in quantum Hall bar systems.Comment: 7 pages, RevTex, 3 figures and 1 table included; references updated and minor typos correcte
    corecore