1 research outputs found
Phase diagrams of correlated electrons: systematic corrections to the mean field theory
Perturbative corrections to the mean field theory for particle-hole
instabilities of interacting electron systems are computed within a scheme
which is equivalent to the recently developed variational approach to the
Kohn-Luttinger superconductivity. This enables an unbiased comparison of
particle-particle and particle-hole instabilities within the same approximation
scheme. A spin-rotation invariant formulation for the particle-hole
instabilities in the triplet channel is developed. The method is applied to the
phase diagram of the t-t' Hubbard model on the square lattice. At the Van Hove
density, antiferromagnetic and d-wave Pomeranchuk phases are found to be stable
close to half filling. However, the latter phase is confined to an extremely
narrow interval of densities and away from the singular filling, d-wave
superconducting instability dominates