3 research outputs found

    Manual punch versus automated flow-through sample desorption for dried blood spot LC-MS/MS analysis of voriconazole

    No full text
    Dried blood spot (DBS) sampling is a patient-friendly alternative for plasma sampling for the purpose of therapeutic drug monitoring (TDM). To speed up the analysis time, an automated flow-through desorption method of DBS samples may be beneficial. This article describes the cross-validation of a manual punch DBS method with an automated desorption (DBS autosampler, DBSA) method for the DBS analysis of the antifungal drug voriconazole, followed by cross-validation of both DBS methods with a plasma-based method, and an assessment of agreement between DBS/DBSA and regular plasma concentration measurements (gold standard) in samples from patients on voriconazole treatment. DBS and DBSA LC-MS/MS assays for voriconazole were validated according to the latest guidelines on bioanalytical method validation (FDA, EMA). Additional DBS-specific validation parameters included hematocrit effect and the influence of spot volume. Passing-Bablok regression and Bland-Altman plots were used to cross-validate the punch DBS, DBSA and plasma methods. The assessment of agreement between DBS/DBSA and plasma concentration measurements involved the performance of DBS/DBSA measurements to predict voriconazole plasma concentrations in patient samples. Both DBS methods complied with all validation parameters. Sample pre-processing time was reduced from 1.5 h to 3 min when using the DBSA. Cross-validation of both DBS methods showed a proportional bias and a correction factor was needed to interchange voriconazole concentrations of both DBS methods. Similarly, the punch DBS method required a factor to correct for proportional bias compared to the plasma method, but the DBSA and plasma assays showed no bias. Limits of agreement of the DBS/DBSA and plasma assays in Bland-Altman analysis were relatively wide, i.e. 0.75-1.28 for the DBS punch method versus plasma method and 0.57-1.38 for the DBSA versus plasma assay. Interpretation of DBS, DBSA and plasma samples in terms of concentrations in or outside of the voriconazole therapeutic range agreed in 82-86% of the cases. The variability in paired DBS/DBSA and plasma concentration measurements is considered high for TDM purposes and this limitation should be balanced against the advantages of DBS sampling of voriconazole and the speed of flow through desorption

    Official International Association for Therapeutic Drug Monitoring and Toxicology guideline: Development and Validation of Dried Blood Spot-based Methods for Therapeutic Drug Monitoring

    Get PDF
    Dried blood spot (DBS) analysis has been introduced more and more into clinical practice to facilitate Therapeutic Drug Monitoring (TDM). To assure the quality of bioanalytical methods, the design, development and validation needs to fit the intended use. Current validation requirements, described in guidelines for traditional matrices (blood, plasma, serum), do not cover all necessary aspects of method development, analytical- and clinical validation of DBS assays for TDM. Therefore, this guideline provides parameters required for the validation of quantitative determination of small molecule drugs in DBS using chromatographic methods, and to provide advice on how these can be assessed. In addition, guidance is given on the application of validated methods in a routine context. First, considerations for the method development stage are described covering sample collection procedure, type of filter paper and punch size, sample volume, drying and storage, internal standard incorporation, type of blood used, sample preparation and prevalidation. Second, common parameters regarding analytical validation are described in context of DBS analysis with the addition of DBS-specific parameters, such as volume-, volcano- and hematocrit effects. Third, clinical validation studies are described, including number of clinical samples and patients, comparison of DBS with venous blood, statistical methods and interpretation, spot quality, sampling procedure, duplicates, outliers, automated analysis methods and quality control programs. Lastly, cross-validation is discussed, covering changes made to existing sampling- and analysis methods. This guideline of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology on the development, validation and evaluation of DBS-based methods for the purpose of TDM aims to contribute to high-quality micro sampling methods used in clinical practice
    corecore