169 research outputs found
Loop operators and S-duality from curves on Riemann surfaces
We study Wilson-'t Hooft loop operators in a class of N=2 superconformal
field theories recently introduced by Gaiotto. In the case that the gauge group
is a product of SU(2) groups, we classify all possible loop operators in terms
of their electric and magnetic charges subject to the Dirac quantization
condition. We then show that this precisely matches Dehn's classification of
homotopy classes of non-self-intersecting curves on an associated Riemann
surface--the same surface which characterizes the gauge theory. Our analysis
provides an explicit prediction for the action of S-duality on loop operators
in these theories which we check against the known duality transformation in
several examples.Comment: 41 page
Consistent reduction of charged D3-D7 systems
We provide a consistent reduction to five dimensions of the system of
D3-branes at Calabi-Yau singularities coupled to D7-branes with world-volume
gauge flux. The D3-branes source the dual to would-be conformal quiver
theories. The D7-branes, which are homogeneously distributed in their
transverse directions, are dual to massless matter in the fundamental
representation at finite (baryon) density. We provide the five-dimensional
action and equations of motion, and discuss a few sub-truncations. The
reduction can be used in the study of transport properties and stability of
D3-D7 charged systems.Comment: 23 pages. v2: references added and minor change
Perturbing gauge/gravity duals by a Romans mass
We show how to produce algorithmically gravity solutions in massive IIA (as
infinitesimal first order perturbations in the Romans mass parameter) dual to
assigned conformal field theories. We illustrate the procedure on a family of
Chern--Simons--matter conformal field theories that we recently obtained from
the N=6 theory by waiving the condition that the levels sum up to zero.Comment: 30 page
Supersymmetric AdS_5 Solutions of Type IIB Supergravity
We analyse the most general bosonic supersymmetric solutions of type IIB
supergravity whose metrics are warped products of five-dimensional anti-de
Sitter space AdS_5 with a five-dimensional Riemannian manifold M_5. All fluxes
are allowed to be non-vanishing consistent with SO(4,2) symmetry. We show that
the necessary and sufficient conditions can be phrased in terms of a local
identity structure on M_5. For a special class, with constant dilaton and
vanishing axion, we reduce the problem to solving a second order non-linear
ODE. We find an exact solution of the ODE which reproduces a solution first
found by Pilch and Warner. A numerical analysis of the ODE reveals an
additional class of local solutions.Comment: 33 page
Lifting D-Instanton Zero Modes by Recombination and Background Fluxes
We study the conditions under which D-brane instantons in Type II orientifold
compactifications generate a non-perturbative superpotential. If the instanton
is non-invariant under the orientifold action, it carries four instead of the
two Goldstone fermions required for superpotential contributions. Unless these
are lifted, the instanton can at best generate higher fermionic F-terms of
Beasley-Witten type. We analyse two strategies to lift the additional zero
modes. First we discuss the process of instantonic brane recombination in Type
IIA orientifolds. We show that in some cases charge invariance of the measure
enforces the presence of further zero modes which, unlike the Goldstinos,
cannot be absorbed. In other cases, the instanton exhibits reparameterisation
zero modes after recombination and a superpotential is generated if these are
lifted by suitable closed or open string couplings. In the second part of the
paper we address lifting the extra Goldstinos of D3-brane instantons by
supersymmetric three-form background fluxes in Type IIB orientifolds. This
requires non-trivial gauge flux on the instanton. Only if the part of the
fermionic action linear in the gauge flux survives the orientifold projection
can the extra Goldstinos be lifted.Comment: 38 pages, 3 figures, 5 tables; v2: Appendix B slightly expanded,
minor rewordin
The a-theorem and conformal symmetry breaking in holographic RG flows
We study holographic models describing an RG flow between two fixed points
driven by a relevant scalar operator. We show how to introduce a spurion field
to restore Weyl invariance and compute the anomalous contribution to the
generating functional in even dimensional theories. We find that the
coefficient of the anomalous term is proportional to the difference of the
conformal anomalies of the UV and IR fixed points, as expected from anomaly
matching arguments in field theory. For any even dimensions the coefficient is
positive as implied by the holographic a-theorem. For flows corresponding to
spontaneous breaking of conformal invariance, we also compute the two-point
functions of the energy-momentum tensor and the scalar operator and identify
the dilaton mode. Surprisingly we find that in the simplest models with just
one scalar field there is no dilaton pole in the two-point function of the
scalar operator but a stronger singularity. We discuss the possible
implications.Comment: 50 pages. v2: minor changes, added references, extended discussion.
v3: we have clarified some of the calculations and assumptions, results
unchanged. v4: published version in JHE
Crystal Model for the Closed Topological Vertex Geometry
The topological string partition function for the neighbourhood of three
spheres meeting at one point in a Calabi-Yau threefold, the so-called 'closed
topological vertex', is shown to be reproduced by a simple Calabi-Yau crystal
model which counts plane partitions inside a cube of finite size. The model is
derived from the topological vertex formalism. This derivation can be
understood as 'moving off the strip' in the terminology of hep-th/0410174, and
offers a possibility to simplify topological vertex techniques to a broader
class of Calabi-Yau geometries. To support this claim a flop transition of the
closed topological vertex is considered and the partition function of the
resulting geometry is computed in agreement with general expectations.Comment: 26 pages, 7 figures; references added, classical part of flop
analysis corrected and expande
Holographic Renormalization for z=2 Lifshitz Space-Times from AdS
Lifshitz space-times with critical exponent z=2 can be obtained by
dimensional reduction of Schroedinger space-times with critical exponent z=0.
The latter space-times are asymptotically AdS solutions of AdS gravity coupled
to an axion-dilaton system and can be uplifted to solutions of type IIB
supergravity. This basic observation is used to perform holographic
renormalization for 4-dimensional asymptotically z=2 locally Lifshitz
space-times by Scherk-Schwarz dimensional reduction of the corresponding
problem of holographic renormalization for 5-dimensional asymptotically locally
AdS space-times coupled to an axion-dilaton system. We can thus define and
characterize a 4-dimensional asymptotically locally z=2 Lifshitz space-time in
terms of 5-dimensional AdS boundary data. In this setup the 4-dimensional
structure of the Fefferman-Graham expansion and the structure of the
counterterm action, including the scale anomaly, will be discussed. We find
that for asymptotically locally z=2 Lifshitz space-times obtained in this way
there are two anomalies each with their own associated nonzero central charge.
Both anomalies follow from the Scherk--Schwarz dimensional reduction of the
5-dimensional conformal anomaly of AdS gravity coupled to an axion-dilaton
system. Together they make up an action that is of the Horava-Lifshitz type
with nonzero potential term for z=2 conformal gravity.Comment: 32 pages, v2: modified discussion of the central charge
Black hole microstates in AdS4 from supersymmetric localization
Abstract: This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual field theory. We focus on a class of asymptotically AdS4static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large N limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS4black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole
Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler
We construct explicitly a new class of backgrounds in type-IIB supergravity
which generalize the baryonic branch of Klebanov-Strassler. We apply a
solution-generating technique that, starting from a large class of solutions of
the wrapped-D5 system, yields the new solutions, and then proceed to study in
detail their properties, both in the IR and in the UV. We propose a simple
intuitive field theory interpretation of the rotation procedure and of the
meaning of our new solutions within the Papadopoulos-Tseytlin ansatz, in
particular in relation to the duality cascade in the Klebanov-Strassler
solution. The presence in the field theory of different VEVs for operators of
dimensions 2, 3 and 6 suggests that this is an important step towards the
construction of the string dual of a genuinely multi-scale (strongly coupled)
dynamical model.Comment: 37 pages, 7 figures. References added, version to appear in JHE
- âŠ