33 research outputs found

    Modulation of granulocyte-endothelium interactions by antileukoproteinase: inhibition of anti-type II collagen antibody-induced leukocyte attachment to the synovial endothelium

    Get PDF
    Antileukoproteinase (ALP) is a physiological inhibitor of granulocytic serine proteases that has been shown to have anti-inflammatory properties in addition to its antiproteolytic activity. On the basis of its potential to block anti-collagen type II (CII) antibody-induced arthritis (CAIA) and to suppress the conformational activation of β(2)-integrins in leukocytes, the present study was undertaken to investigate its interference with leukocyte adherence to cytokine-activated endothelium. The potential of recombinant ALP to block the interactions of leukocytes with the endothelial lining was concomitantly investigated in vitro and in vivo. Thus, intravital fluorescence microscopic imaging of leukocyte rolling and firm adhesion to postcapillary venules were performed in the knee joints of DBA1/J mice after intravenous injection of anti-CII mAbs. An IL-1β-activated endothelial layer formed by a murine glomerular cell line (glEND.2) was used to assay the interaction with human leukocytes in vitro. Electromobility shift and luciferase reporter gene assays permitted the analysis of cytokine-induced activation of the NF-κB pathway. Fluorescence-activated cell sorting was applied to determine endothelial E-selectin expression. Leukocyte rolling and firm adhesion to the synovial endothelium in an early response to the anti-CII antibody transfer were significantly decreased in ALP-pretreated mice. Concomitantly, ALP suppressed the IL-1β-induced NF-κB activation and the upregulation of E-selectin expression in glEND.2 cells in vitro. These findings support the notion that the newly uncovered properties of ALP to interfere with cytokine signalling and upregulation of adhesion molecules in endothelial cells are likely to contribute to the therapeutic potential of ALP in immune-complex-induced tissue injury

    CC chemokine ligand 20 partially controls adhesion of naive B cells to activated endothelial cells under shear stress

    No full text
    Chemokines are thought to control lymphocyte recruitment to the inflamed endothelium. To dissect chemokine-mediated adhesion, binding of ex vivo isolated splenocytes to tumor necrosis factor (TNF)–activated endothelial cells was analyzed under shear stress. We observed specific adhesion of naive follicular B cells, which could be blocked by pertussis toxin. This indicated a G protein–mediated binding and pointed at a contribution of chemokine receptors to B-cell adhesion. Analysis of chemokines expressed by TNF-activated endothelial cells showed that CC chemokine ligand 2 (CCL2), CCL17, and CCL20 were up-regulated. Only on follicular B cells was the cognate receptor for CCL20, CC chemokine receptor 6 (CCR6), expressed strongly, and a functional transmigration assay with CCR6-negative B cells demonstrated conclusively the sole signaling of CCL20 through CCR6. Desensitization of CCR6 on naive B cells with CCL20 resulted in receptor down-regulation and reduced B-cell adhesion. We conclude that CCL20 plays a vital role in B-cell adhesion to the inflamed endothelium
    corecore