42,114 research outputs found
Coherent states and the quantization of 1+1-dimensional Yang-Mills theory
This paper discusses the canonical quantization of 1+1-dimensional Yang-Mills
theory on a spacetime cylinder, from the point of view of coherent states, or
equivalently, the Segal-Bargmann transform. Before gauge symmetry is imposed,
the coherent states are simply ordinary coherent states labeled by points in an
infinite-dimensional linear phase space. Gauge symmetry is imposed by
projecting the original coherent states onto the gauge-invariant subspace,
using a suitable regularization procedure. We obtain in this way a new family
of "reduced" coherent states labeled by points in the reduced phase space,
which in this case is simply the cotangent bundle of the structure group K.
The main result explained here, obtained originally in a joint work of the
author with B. Driver, is this: The reduced coherent states are precisely those
associated to the generalized Segal-Bargmann transform for K, as introduced by
the author from a different point of view. This result agrees with that of K.
Wren, who uses a different method of implementing the gauge symmetry. The
coherent states also provide a rigorous way of making sense out of the quantum
Hamiltonian for the unreduced system.
Various related issues are discussed, including the complex structure on the
reduced phase space and the question of whether quantization commutes with
reduction
Status of ultrachemical analysis for semiconductors
Status of ultratrace chemical analyses of materials for semiconductors was studied. This study covered atomic absorption spectroscopy, emission spectroscopy, and activation analyses. It makes recommendations to improve sensitivity, reliability and versatility for ultratrace chemical analysis
Asymptotic iteration method for eigenvalue problems
An asymptotic interation method for solving second-order homogeneous linear
differential equations of the form y'' = lambda(x) y' + s(x) y is introduced,
where lambda(x) \neq 0 and s(x) are C-infinity functions. Applications to
Schroedinger type problems, including some with highly singular potentials, are
presented.Comment: 14 page
Acoustic Wave Filters in Solids
The purpose of the work was originally to extend work of Dr. G. W. Stewart on Acoustic Wave Filters in Air to the case where the transmitting medium is a solid. Due to the fact that transmission in solids consists of two types of waves, it is not possible to apply the original theory and recourse must be had, at least in the first instance, to experiment. The problem thus became one of finding an empirical formula which would aid in working out a special approximate theory for these filters
Coherent states for compact Lie groups and their large-N limits
The first two parts of this article surveys results related to the
heat-kernel coherent states for a compact Lie group K. I begin by reviewing the
definition of the coherent states, their resolution of the identity, and the
associated Segal-Bargmann transform. I then describe related results including
connections to geometric quantization and (1+1)-dimensional Yang--Mills theory,
the associated coherent states on spheres, and applications to quantum gravity.
The third part of this article summarizes recent work of mine with Driver and
Kemp on the large-N limit of the Segal--Bargmann transform for the unitary
group U(N). A key result is the identification of the leading-order large-N
behavior of the Laplacian on "trace polynomials."Comment: Submitted to the proceeding of the CIRM conference, "Coherent states
and their applications: A contemporary panorama.
Perturbation expansions for a class of singular potentials
Harrell's modified perturbation theory [Ann. Phys. 105, 379-406 (1977)] is
applied and extended to obtain non-power perturbation expansions for a class of
singular Hamiltonians H = -D^2 + x^2 + A/x^2 + lambda/x^alpha, (A\geq 0, alpha
> 2), known as generalized spiked harmonic oscillators. The perturbation
expansions developed here are valid for small values of the coupling lambda >
0, and they extend the results which Harrell obtained for the spiked harmonic
oscillator A = 0. Formulas for the the excited-states are also developed.Comment: 23 page
A Preliminary Study of Solar Powered Aircraft and Associated Power Trains
The feasibility of regeneratively powered solar high altitude powered platform (HAPP) remotely piloted vehicles was assessed. Those technologies which must be pursued to make long duration solar HAPPs feasible are recommended. A methodology which involved characterization and parametric analysis of roughly two dozen variables to determine vehicles capable of fulfilling the primary mission are defined. One of these vehicles was then conceptually designed. Variations of each major design parameter were investigated along with state-of-the-art changes in power train component capabilities. The midlatitude mission studied would be attainable by a solar HAPP if fuel cell, electrolyzer and photovoltaic technologies are pursued. Vehicles will be very large and have very lightweight structures in order to attain the combinations of altitude and duration required by the primary mission
‘VIOLET’: a fluorescence-based simulation exercise for training healthcare workers in the use of personal protective equipment
Background
Healthcare workers caring for patients with high-consequence infectious diseases (HCIDs) require protection from pathogen exposure, for example by wearing personal protective equipment (PPE). Protection is acquired through the inherent safety of the PPE components, but also their safe and correct use, supported by adequate training and user familiarity. However, the evidence base for HCID PPE ensembles and any associated training is lacking, with subsequent variation between healthcare providers.
Aim
To develop an evidence-based assessment and training tool for evaluating PPE ensembles and doffing protocols, in the assessment of patients with suspected HCIDs.
Methods
VIOLET (Visualising Infection with Optimised Light for Education and Training) comprises a healthcare mannequin adapted to deliver simulated bodily fluids containing UV-fluorescent tracers. On demand and remotely operated, the mannequin projectile vomits (blue), coughs (red), has diarrhoea (yellow) and is covered in sweat (orange). Wearing PPE, healthcare staff participate in an HCID risk assessment and examination of the ‘patient’, thereby becoming exposed to these bodily fluids. Contamination of PPE is visualized and body-mapped under UV light before and after removal. Observational findings and participant feedback, around its use as a training exercise, is also recorded.
Findings
Significant contamination from different exposure events was seen, enabling evaluation of PPE and doffing procedures used. Observational data and participant feedback demonstrated its strengths and success as a training technique.
Conclusion
Simulation exercises using VIOLET provide evidence-based assessment of PPE ensembles, and are a valuable resource for training of healthcare staff in wearing and safe doffing of PPE
Use of ultraviolet-fluorescence-based simulation in evaluation of personal protective equipment worn for first assessment and care of a patient with suspected high-consequence infectious disease
Background: Variations currently exist across the UK in the choice of personal protective equipment (PPE) used by healthcare workers when caring for patients with suspected high-consequence infectious diseases (HCIDs).
Aim: To test the protection afforded to healthcare workers by current PPE ensembles during assessment of a suspected HCID case, and to provide an evidence base to justify proposal of a unified PPE ensemble for healthcare workers across the UK.
Methods: One ‘basic level’ (enhanced precautions) PPE ensemble and five ‘suspected case’ PPE ensembles were evaluated in volunteer trials using ‘Violet’; an ultraviolet-fluorescence-based simulation exercise to visualize exposure/contamination events. Contamination was photographed and mapped.
Findings: There were 147 post-simulation and 31 post-doffing contamination events, from a maximum of 980, when evaluating the basic level of PPE. Therefore, this PPE ensemble did not afford adequate protection, primarily due to direct contamination of exposed areas of the skin. For the five suspected case ensembles, 1584 post-simulation contamination events were recorded, from a maximum of 5110. Twelve post-doffing contamination events were also observed (face, two events; neck, one event; forearm, one event; lower legs, eight events).
Conclusion: All suspected case PPE ensembles either had post-doffing contamination events or other significant disadvantages to their use. This identified the need to design a unified PPE ensemble and doffing procedure, incorporating the most protective PPE considered for each body area. This work has been presented to, and reviewed by, key stakeholders to decide on a proposed unified ensemble, subject to further evaluation
- …