590 research outputs found

    Limitations of the heavy-baryon expansion as revealed by a pion-mass dispersion relation

    Full text link
    The chiral expansion of nucleon properties such as mass, magnetic moment, and magnetic polarizability are investigated in the framework of chiral perturbation theory, with and without the heavy-baryon expansion. The analysis makes use of a pion-mass dispersion relation, which is shown to hold in both frameworks. The dispersion relation allows an ultraviolet cutoff to be implemented without compromising the symmetries. After renormalization, the leading-order heavy-baryon loops demonstrate a stronger dependence on the cutoff scale, which results in weakened convergence of the expansion. This conclusion is tested against the recent results of lattice quantum chromodynamics simulations for nucleon mass and isovector magnetic moment. In the case of the polarizability, the situation is even more dramatic as the heavy-baryon expansion is unable to reproduce large soft contributions to this quantity. Clearly, the heavy-baryon expansion is not suitable for every quantity.Comment: Accepted for publication in EPJ C. Made changes based on referee comments: clarifying sentences to conclusion 1. of Section IV, beginning of Section V, and new footnote in Section VI, page 8. Added more detailed explanation in paragraph 4 of Section III. Added citations of Phys.Rev. D60, 034014, and Phys.Lett. B716, 33

    Muon anomalous magnetic moment in the standard model with two Higgs doublets

    Get PDF
    The muon anomalous magnetic moment is investigated in the standard model with two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all the effective Yukawa couplings become complex. As a consequence of the non-zero phase in the couplings, the one loop contribution from the neutral scalar bosons could be positive and negative relying on the CP phases. The interference between one and two loop diagrams can be constructive in a large parameter space of CP-phases. This will result in a significant contribution to muon anomalous magnetic moment even in the flavor conserving process with a heavy neutral scalar boson (mh∌m_h \sim 200 GeV) once the effective muon Yukawa coupling is large (âˆŁÎŸÎŒâˆŁâˆŒ50|\xi_\mu|\sim 50). In general, the one loop contributions from lepton flavor changing scalar interactions become more important. In particular, when all contributions are positive in a reasonable parameter space of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation can be easily explained even for a heavy scalar boson with a relative small Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54 (2001) 11501

    Vascular cognitive impairment in the mouse reshapes visual, spatial network functional connectivity

    Get PDF
    Connectome analysis of neuroimaging data is a rapidly expanding field to identify disease specific biomarkers. Structural diffusion MRI connectivity has been useful in individuals with radiological features of small vessel disease, such as white matter hyperintensities. Global efficiency, a network metric calculated from the structural connectome, is an excellent predictor of cognitive decline. To dissect the biological underpinning of these changes, animal models are required. We tested whether the structural connectome is altered in a mouse model of vascular cognitive impairment. White matter damage was more pronounced by 6 compared to 3 months. Global efficiency remained intact, but the visual association cortex exhibited increased structural connectivity with other brain regions. Exploratory resting state functional MRI connectivity analysis revealed diminished default mode network activity in the model compared to shams. Further perturbations were observed in a primarily cortical hub and the retrosplenial and visual cortices, and the hippocampus were the most affected nodes. Behavioural deficits were observed in the cued water maze, supporting the suggestion that the visual and spatial memory networks are affected. We demonstrate specific circuitry is rendered vulnerable to vascular stress in the mouse, and the model will be useful to examine pathophysiological mechanisms of small vessel disease

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
    • 

    corecore