69,846 research outputs found

    FearNot! An Anti-Bullying Intervention: Evaluation of an Interactive Virtual Learning Environment

    Get PDF
    Original paper can be found at: http://www.aisb.org.uk/publications/proceedings.shtm

    On the Theory of Killing Orbits in Space-Time

    Full text link
    This paper gives a theoretical discussion of the orbits and isotropies which arise in a space-time which admits a Lie algebra of Killing vector fields. The submanifold structure of the orbits is explored together with their induced Killing vector structure. A general decomposition of a space-time in terms of the nature and dimension of its orbits is given and the concept of stability and instability for orbits introduced. A general relation is shown linking the dimensions of the Killing algebra, the orbits and the isotropies. The well-behaved nature of "stable" orbits and the possible miss-behaviour of the "unstable" ones is pointed out and, in particular, the fact that independent Killing vector fields in space-time may not induce independent such vector fields on unstable orbits. Several examples are presented to exhibit these features. Finally, an appendix is given which revisits and attempts to clarify the well-known theorem of Fubini on the dimension of Killing orbits.Comment: Latex, 19 pages, no figur

    A two-compartment mechanochemical model of the roles of\ud transforming growth factor β and tissue tension in dermal wound healing

    Get PDF
    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor−β (TGFβ) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGFβ and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGFβ in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGFβ significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures

    A fibrocontractive mechanochemical model of dermal wound\ud closure incorporating realistic growth factor kinetics

    Get PDF
    Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: the cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched

    Decay of an isolated monopole into a Dirac monopole configuration

    Full text link
    We study numerically the detailed structure and decay dynamics of isolated monopoles in conditions similar to those of their recent experimental discovery. We find that the core of a monopole in the polar phase of a spin-1 Bose-Einstein condensate contains a small half-quantum vortex ring. Well after the creation of the monopole, we observe a dynamical quantum phase transition that destroys the polar phase. Strikingly, the resulting ferromagnetic order parameter exhibits a Dirac monopole in its synthetic magnetic field.Comment: 6 pages, 5 figure

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure
    corecore