59,512 research outputs found
Semiclassical energy formulas for power-law and log potentials in quantum mechanics
We study a single particle which obeys non-relativistic quantum mechanics in
R^N and has Hamiltonian H = -Delta + V(r), where V(r) = sgn(q)r^q. If N \geq 2,
then q > -2, and if N = 1, then q > -1. The discrete eigenvalues E_{n\ell} may
be represented exactly by the semiclassical expression E_{n\ell}(q) =
min_{r>0}\{P_{n\ell}(q)^2/r^2+ V(r)}. The case q = 0 corresponds to V(r) =
ln(r). By writing one power as a smooth transformation of another, and using
envelope theory, it has earlier been proved that the P_{n\ell}(q) functions are
monotone increasing. Recent refinements to the comparison theorem of QM in
which comparison potentials can cross over, allow us to prove for n = 1 that
Q(q)=Z(q)P(q) is monotone increasing, even though the factor Z(q)=(1+q/N)^{1/q}
is monotone decreasing. Thus P(q) cannot increase too slowly. This result
yields some sharper estimates for power-potential eigenvlaues at the bottom of
each angular-momentum subspace.Comment: 20 pages, 5 figure
Coulomb plus power-law potentials in quantum mechanics
We study the discrete spectrum of the Hamiltonian H = -Delta + V(r) for the
Coulomb plus power-law potential V(r)=-1/r+ beta sgn(q)r^q, where beta > 0, q >
-2 and q \ne 0. We show by envelope theory that the discrete eigenvalues
E_{n\ell} of H may be approximated by the semiclassical expression
E_{n\ell}(q) \approx min_{r>0}\{1/r^2-1/(mu r)+ sgn(q) beta(nu r)^q}.
Values of mu and nu are prescribed which yield upper and lower bounds.
Accurate upper bounds are also obtained by use of a trial function of the form,
psi(r)= r^{\ell+1}e^{-(xr)^{q}}. We give detailed results for
V(r) = -1/r + beta r^q, q = 0.5, 1, 2 for n=1, \ell=0,1,2, along with
comparison eigenvalues found by direct numerical methods.Comment: 11 pages, 3 figure
Semirelativistic stability of N-boson systems bound by 1/r pair potentials
We analyze a system of self-gravitating identical bosons by means of a
semirelativistic Hamiltonian comprising the relativistic kinetic energies of
the involved particles and added (instantaneous) Newtonian gravitational pair
potentials. With the help of an improved lower bound to the bottom of the
spectrum of this Hamiltonian, we are able to enlarge the known region for
relativistic stability for such boson systems against gravitational collapse
and to sharpen the predictions for their maximum stable mass.Comment: 11 pages, considerably enlarged introduction and motivation,
remainder of the paper unchange
General energy bounds for systems of bosons with soft cores
We study a bound system of N identical bosons interacting by model pair
potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a
variational trial function and the `equivalent 2-body method', we find explicit
upper and lower bound formulas for the N-particle ground-state energy in
arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is
demonstrated that the upper bound can be systematically improved with the aid
of a special large-N limit in collective field theory
Radiobiological studies with monoenergetic neutrons
The Radiological Research Accelerator Facility (RARAF) has the capability of
producing essentially monoenergetic neutron beams, ranging in energy from 16.4 MeV
down to 220 keV. In addition, two lower energy neutron beams are available which
consist of a wide spectrum of energies and are described as the 110 keV and 60 keV
spectra. Seedlings of Vicia faba have been used to measure the oxygen enhancement
ratio (OER) and the relative biological effectiveness (RBE) of each of these neutron
beams. The OER decreases as the neutron energy is reduced between 15.4 MeV and
220 keV, but does not appear to decrease further for lower energy neutrons. RBE increases
as the neutron energy is reduced from 15.4 AleV to 440 keV; the curve then
goes through a maximum at around 350 keV, and for lower energies the RBE falls again
Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information
A rigorous lower bound is obtained for the average resolution of any estimate
of a shift parameter, such as an optical phase shift or a spatial translation.
The bound has the asymptotic form k_I/ where G is the generator of the
shift (with an arbitrary discrete or continuous spectrum), and hence
establishes a universally applicable bound of the same form as the usual
Heisenberg limit. The scaling constant k_I depends on prior information about
the shift parameter. For example, in phase sensing regimes, where the phase
shift is confined to some small interval of length L, the relative resolution
\delta\hat{\Phi}/L has the strict lower bound (2\pi e^3)^{-1/2}/,
where m is the number of probes, each with generator G_1, and entangling joint
measurements are permitted. Generalisations using other resource measures and
including noise are briefly discussed. The results rely on the derivation of
general entropic uncertainty relations for continuous observables, which are of
interest in their own right.Comment: v2:new bound added for 'ignorance respecting estimates', some
clarification
Proof of Rounding by Quenched Disorder of First Order Transitions in Low-Dimensional Quantum Systems
We prove that for quantum lattice systems in d<=2 dimensions the addition of
quenched disorder rounds any first order phase transition in the corresponding
conjugate order parameter, both at positive temperatures and at T=0. For
systems with continuous symmetry the statement extends up to d<=4 dimensions.
This establishes for quantum systems the existence of the Imry-Ma phenomenon
which for classical systems was proven by Aizenman and Wehr. The extension of
the proof to quantum systems is achieved by carrying out the analysis at the
level of thermodynamic quantities rather than equilibrium states.Comment: This article presents the detailed derivation of results which were
announced in Phys. Rev. Lett. 103 (2009) 197201 (arXiv:0907.2419). v3
incorporates many corrections and improvements resulting from referee
comment
Variational analysis for a generalized spiked harmonic oscillator
A variational analysis is presented for the generalized spiked harmonic
oscillator Hamiltonian operator H, where H = -(d/dx)^2 + Bx^2+ A/x^2 +
lambda/x^alpha, and alpha and lambda are real positive parameters. The
formalism makes use of a basis provided by exact solutions of Schroedinger's
equation for the Gol'dman and Krivchenkov Hamiltonian (alpha = 2), and the
corresponding matrix elements that were previously found. For all the discrete
eigenvalues the method provides bounds which improve as the dimension of the
basis set is increased. Extension to the N-dimensional case in arbitrary
angular-momentum subspaces is also presented. By minimizing over the free
parameter A, we are able to reduce substantially the number of basis functions
needed for a given accuracy.Comment: 15 pages, 1 figur
Spiked oscillators: exact solution
A procedure to obtain the eigenenergies and eigenfunctions of a quantum
spiked oscillator is presented. The originality of the method lies in an
adequate use of asymptotic expansions of Wronskians of algebraic solutions of
the Schroedinger equation. The procedure is applied to three familiar examples
of spiked oscillators
- …