52 research outputs found

    Drivers of people's preferences for spatial proximity to energy infrastructure technologies: a cross-country analysis. ESRI WP583, February 2018

    Get PDF
    Many countries plan to decarbonise their energy systems by increasing energy efficiency and expanding the use of renewable energy sources (RES). Such actions require significant investments in new energy infrastructures. While people are generally accepting of these infrastructures, opposition sometimes arises when these developments are sited at close proximity to people's residences. Therefore, it is important to understand what actually drives people's preferences for spatial proximity to different energy infrastructure technologies. This study examines the factors influencing people's proximity preferences to different energy technologies using a cross-country econometric analysis of the stated preference data from an unprecedented survey conducted on nationally representative samples of the population in Ireland, the US and Germany. The survey involved more than 4,500 participants in total. This paper presents the data and selected results from a generalised ordered logit model for each energy technology surveyed. These are; wind turbines, solar power technology, biomass power plant, coal-red power plant and natural gas power plant. The results show that, in general, German and Irish citizens are willing to accept energy infrastructures at smaller distances to their homes than their US counterparts. Moreover, attitudinal factors are found to shape people's preferences more consistently than any of the socio-demographic characteristics

    Rho1 regulates signaling events required for proper Drosophila embryonic development.

    Get PDF
    The Rho small GTPase has been implicated in many cellular processes, including actin cytoskeletal regulation and transcriptional activation. The molecular mechanisms underlying Rho function in many of these processes are not yet clear. Here we report that in Drosophila, reduction of maternal Rho1 compromises signaling pathways consistent with defects in membrane trafficking events. These mutants fail to maintain expression of the segment polarity genes engrailed (en), wingless (wg), and hedgehog (hh), contributing to a segmentation phenotype. Formation of the Wg protein gradient involves the internalization of Wg into vesicles. The number of these Wg-containing vesicles is reduced in maternal Rho1 mutants, suggesting a defect in endocytosis. Consistent with this, stripes of cytoplasmic beta-catenin that accumulate in response to Wg signaling are narrower in these mutants relative to wild type. Additionally, the amount of extracellular Wg protein is reduced in maternal Rho1 mutants, indicating a defect in secretion. Signaling pathways downregulated by endocytosis, such as the epidermal growth factor receptor (EGFR) and Torso pathways, are hyperactivated in maternal Rho1 mutants, consistent with a general role for Rho1 in regulating signaling events governing proper patterning during Drosophila development

    A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa

    Get PDF
    BACKGROUND: Formins are multidomain proteins defined by a conserved FH2 (formin homology 2) domain with actin nucleation activity preceded by a proline-rich FH1 (formin homology 1) domain. Formins act as profilin-modulated processive actin nucleators conserved throughout a wide range of eukaryotes. RESULTS: We present a detailed sequence analysis of the 10 formins (ForA to J) identified in the genome of the social amoeba Dictyostelium discoideum. With the exception of ForI and ForC all other formins conform to the domain structure GBD/FH3-FH1-FH2-DAD, where DAD is the Diaphanous autoinhibition domain and GBD/FH3 is the Rho GTPase-binding domain/formin homology 3 domain that we propose to represent a single domain. ForC lacks a FH1 domain, ForI lacks recognizable GBD/FH3 and DAD domains and ForA, E and J have additional unique domains. To establish the relationship between formins of Dictyostelium and other organisms we constructed a phylogenetic tree based on the alignment of FH2 domains. Real-time PCR was used to study the expression pattern of formin genes. Expression of forC, D, I and J increased during transition to multi-cellular stages, while the rest of genes displayed less marked developmental variations. During sexual development, expression of forH and forI displayed a significant increase in fusion competent cells. CONCLUSION: Our analysis allows some preliminary insight into the functionality of Dictyostelium formins: all isoforms might display actin nucleation activity and, with the exception of ForI, might also be susceptible to autoinhibition and to regulation by Rho GTPases. The architecture GBD/FH3-FH1-FH2-DAD appears common to almost all Dictyostelium, fungal and metazoan formins, for which we propose the denomination of conventional formins, and implies a common regulatory mechanism

    Formin homology 2 domains occur in multiple contexts in angiosperms

    Get PDF
    BACKGROUND: Involvement of conservative molecular modules and cellular mechanisms in the widely diversified processes of eukaryotic cell morphogenesis leads to the intriguing question: how do similar proteins contribute to dissimilar morphogenetic outputs. Formins (FH2 proteins) play a central part in the control of actin organization and dynamics, providing a good example of evolutionarily versatile use of a conserved protein domain in the context of a variety of lineage-specific structural and signalling interactions. RESULTS: In order to identify possible plant-specific sequence features within the FH2 protein family, we performed a detailed analysis of angiosperm formin-related sequences available in public databases, with particular focus on the complete Arabidopsis genome and the nearly finished rice genome sequence. This has led to revision of the current annotation of half of the 22 Arabidopsis formin-related genes. Comparative analysis of the two plant genomes revealed a good conservation of the previously described two subfamilies of plant formins (Class I and Class II), as well as several subfamilies within them that appear to predate the separation of monocot and dicot plants. Moreover, a number of plant Class II formins share an additional conserved domain, related to the protein phosphatase/tensin/auxilin fold. However, considerable inter-species variability sets limits to generalization of any functional conclusions reached on a single species such as Arabidopsis. CONCLUSIONS: The plant-specific domain context of the conserved FH2 domain, as well as plant-specific features of the domain itself, may reflect distinct functional requirements in plant cells. The variability of formin structures found in plants far exceeds that known from both fungi and metazoans, suggesting a possible contribution of FH2 proteins in the evolution of the plant type of multicellularity

    Watch Party: Social Media & Human Rights

    No full text
    This collection contains special educational videos intended to provide an introduction to human rights topics, featuring GCHR affiliated faculty. They are highly encouraged for use in the classroom or community events and meetings. Dr. Magie Hall, UNO Assistant Professor in the School of Interdisciplinary Informatics, showcases a video learning module on Social Media and Human Rights followed by a Q&A session. This event was released for UNO Human Rights Week 2020 at the University of Nebraska at Omaha
    • …
    corecore