17 research outputs found

    Antifungal Susceptibilities of Cryptococcus neoformans

    Get PDF
    Susceptibility profiles of medically important fungi in less-developed countries remain uncharacterized. We measured the MICs of amphotericin B, 5-flucytosine, fluconazole, itraconazole, and ketoconazole for Cryptococcus neoformans clinical isolates from Thailand, Malawi, and the United States and found no evidence of resistance or MIC profile differences among the countries

    Rapid Identification of Staphylococcus aureus and the mecA Gene from BacT/ALERT Blood Culture Bottles by Using the LightCycler System

    No full text
    One hundred BacT/ALERT blood culture bottles growing gram-positive cocci in clusters were cultured and studied by LightCycler PCR for the sa442 and mecA genes. PCR was 100% sensitive and specific for detecting Staphylococcus aureus and methicillin resistance in S. aureus but was less accurate for methicillin resistance in coagulase-negative staphylococci

    Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of Disseminated Mycobacterium avium Infection▿

    No full text
    Organisms of the Mycobacterium avium-intracellulare complex (MAC) have been demonstrated to be susceptible to moxifloxacin. However, clinical data on how to utilize moxifloxacin to treat disseminated MAC are scanty. In addition, there have been no moxifloxacin pharmacokinetic-pharmacodynamic (PK/PD) studies performed for MAC infection. We utilized an in vitro PK/PD model of intracellular MAC to study moxifloxacin PK/PD for disseminated disease. Moxifloxacin doses, based on a serum half-life of 12 h, were administered, and the 0- to 24-h area under the concentration-time curve (AUC0-24) to MIC ratios associated with 1.0 log10 CFU/ml per week kill and 90% of maximal kill (EC90) were identified. The AUC0-24/MIC ratio associated with 1.0 log10 CFU/ml kill was 17.12, and that with EC90 was 391.56 (r2 = 0.97). Next, the moxifloxacin MIC distribution in 102 clinical isolates of MAC was identified. The median MIC was 1 to 2 mg/liter. Monte Carlo simulations of 10,000 patients with disseminated MAC were performed to determine the probability that daily moxifloxacin doses of 400 and 800 mg/day would achieve or exceed 1.0 log10 CFU/ml per week kill or EC90. Doses of 400 and 800 mg/day achieved the AUC0-24/MIC ratio of 17.12 in 64% and 92% of patients, respectively. The critical concentration of moxifloxacin against MAC was identified as 0.25 mg/liter in Middlebrook media. The proposed susceptibility breakpoint means that a larger proportion of clinical isolates is resistant to moxifloxacin prior to therapy. For patients infected with susceptible isolates, however, 800 mg a day should be examined for safety and efficacy for disseminated M. avium disease

    Spectra MRSA, a New Chromogenic Agar Medium To Screen for Methicillin-Resistant Staphylococcus aureus▿

    No full text
    A novel chromogenic medium, Spectra MRSA (Remel, Lenexa, KS), was designed to detect methicillin-resistant Staphylococcus aureus (MRSA) rapidly and more efficiently than traditional media (i.e., tryptic soy agar with 5% sheep blood [SBA] and mannitol salt agar [MSA]). A multicenter study (including four clinical trial sites and the Medical College of Wisconsin [MCW] Milwaukee, WI) compared the performance characteristics of Spectra MRSA to those of the traditional media for the detection of MRSA. For this study, 767 nasal swab specimens from the multicenter study (traditional medium used, SBA) and 667 nasal swab specimens from MCW (traditional medium used, MSA) were plated on each test medium and examined after 24 and 48 h of incubation. At 24 h, the sensitivity and the specificity of each medium were as follows: in the multicenter study, 95.4% and 99.7%, respectively, for Spectra MRSA and 93.6% and 100%, respectively, for SBA; at MCW, 95.2% and 99.5%, respectively, for Spectra MRSA and 88.7% and 94.0%, respectively, for MSA. The positive predictive values of each medium at 24 h were as follows: in the multicenter study, 98.1% for Spectra MRSA and 100% for SBA; at MCW, 95.2% for Spectra MRSA and 60.4% for MSA. In our evaluation, we found that Spectra MRSA was able to rapidly identify and differentiate methicillin-resistant S. aureus from methicillin-susceptible S. aureus on the basis of the utilization of chromogens that result in denim blue colonies, thus eliminating the need for biochemical analysis and antimicrobial susceptibility testing. Extending the incubation beyond 24 h did not significantly improve the recovery of MRSA and resulted in decreased specificity
    corecore