11 research outputs found
Proceedings of 2012 International Symposium on Optomechatronic Technologies
International audienc
Proceedings of 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS).
International audienc
Proceedings of 2012 International Symposium on Optomechatronic Technologies
International audienc
Proceedings of 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
International audienc
Proceedings of 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
International audienc
An experimental comparison of path planning techniques applied to micro-sized magnetic agents
Micro-sized agents can be used in applications suchas microassembly, micromanipulation, and minimally invasive surgeries. Magnetic agents such as paramagnetic microparticles can be controlled to deliver pharmaceutical agents to difficult-toaccess regions within the human body. In order to autonomously move these microparticles toward a target/goal area, an obstaclefree path must be computed using path planning algorithms. Several path planning algorithms have been developed in the literature, however, to the best of our knowledge, only few have been employed in an experimental scenario. In this paper we perform an experimental comparison of six path planning algorithms when applied to the motion control of paramagnetic microparticles. Among the families of deterministic and probabilistic path planners we select the ones that we consider the most fundamental, such as: A* with quadtrees, A* with uniform grids, D* Lite, Artificial Potential Field, Probabilistic Roadmap and Rapidly-exploring Random Tree. We consider a 2D environment made by both dynamic and static obstacles. Four scenarios are evaluated. Three metrics such as computation time, length of the trajectory performed by the microparticle, and time to reach the goal are used to compare the planners. Experimental results reveal equivalence between almost all the considered planners in terms of trajectory length and completion time. Concerning the computation time, A* with quadtrees and Artificial Potential Field achieve the best performances
Characterization of DNA Bio-bonds for Meso-Scale Self-assembly
Abstract — In this paper, we have investigated the use of DNA hybridization as the basis for the production of new mesoscale components. AFM experimental results are studied and compared to two theoretical approaches: molecular and thermodynamic. We explain how and why DNA hybridization process can provide a good bond to self assemble components, and how molecular modelling methods allow further understanding of the physical mechanism of this process. Furthermore, the strength interaction of DNA complementary strands is measured and analyzed using statistical tools. These results are then compared to the theoretical approaches. I
Scaling Rules for Microrobots with Full Energetic Autonomy
There is an increasing need for wireless autonomous micro electromechanical systems (MEMS) and microrobots that can perform various functions such as sensing, diagnosis, locomotion, actuation, implantation, material removal, manipulation, and localized drug delivery. A major problem with these systems is the production, storage, and transduction of power at the micro scale. In addition, these miniature devices cannot use existing battery packs that are commonly used to power electronic devices. These MEMS and microrobots need on-board power sources that are miniaturized to their size. Together with the energy of an external source, some basic functions of microrobots can be powered simultaneously. This study seeks to develop a theoretical framework based on a chemo-electromagnetic model for use in the design of microrobots with full energetic autonomy. We first conceive a microrobot design and derive its mathematical model; the design consists of an on-board fuel generator, electrochemical device, electromagnetic device, and a locomotion mechanism. Then we present numerical simulations to show the relationship between the consumption rate of the H2 source, power density, and angular and translational velocities at low Reynolds number. We find that power density decreases approximately linearly with the diameter, while the relative velocity with respect to the body-length is approximately inversely proportional to the size, making downscaling favourable for this class of untethered devices