4 research outputs found

    Adaptive Energy Saving and Mobility Support IPv6 Routing Protocol in Low-Power and Lossy Networks for Internet of Things and Wireless Sensor Networks

    Get PDF
    Internet of Things (IoT) is an interconnection of physical objects that can be controlled, monitored and exchange information from remote locations over the internet while been connected to an Application Programme Interface (API) and sensors. It utilizes low-powered digital radios for communication enabling millions and billions of Low-power and Lossy Network (LLN) devices to communicate efficiently via a predetermined routing protocol. Several research gaps have identified the constraints of standardised versions of IPv6 Routing Protocol for Low Power and Lossy Networks evidently showing its lack of ability to handle the growing application needs and challenges. This research aims to handle routing from a different perspective extending from energy efficiency, to mobility aware and energy scavenging nodes thereby presenting numerous improvements that can suit various network topologies and application needs. Envisioning all the prospects and innovative services associated with the futuristic ubiquitous communication of IoT applications, we propose an adaptive Objective Function for RPL protocol known as Optimum Reliable Objective Function (OR-OF) having a fuzzy combination of five routing metrics which are chosen based on system and application requirements. It is an approach which combines the three proposed implemented Objective Functions within this thesis to enable the OR-OF adapt to different routing requirements for different IoT applications. The three proposed OFs are Energy saving Routing OF, Enhanced Mobility Support Routing OF and Optimized OF for Energy Scavenging nodes. All proposed OFs were designed, implemented, and simulated in COOJA simulator of ContikiOS, and mathematical models were developed to validate simulated results. Performance Evaluation indicated an overall improvement as compared with the standardised versions of RPL protocols and other related research works in terms of network lifetime with an average of 40%, packet delivery ratio of 21%, energy consumption of 82% and End-to-End Delay of 92%

    Disaster scenario optimised link state routing protocol and message prioritisation

    Get PDF
    Natural and artificial (human‐made) disasters have been steadily increasing all over the world, signifying the importance of providing reliable and energy friendly communication network to survivors in the aftermath of a disaster. On the other hand, low‐battery devices running optimised link state routing (OLSR) protocol often experience quick power failure which restricts their ability to communicate for a necessary period during rescue operations. To extend the lifespans and prioritise message delivery on low‐battery devices, the authors examine disaster scenario optimised link state routing (DS‐OLSR) protocol ALERT message and propose an innovative solution to prioritise messages based on the device battery energy level, leading to more energy conservation, packet delivery as well as better emotional state of survivors. An ALERT message is a novel message type added to mobile ad‐hoc network's (MANET) popular OLSR protocol for energy efficiency. The proposed DS‐OLSR Protocol and Message Prioritisation (DS‐OLSRMP) as an extension of DS‐OLSR modifies the multipoint relay mechanism and uses a prioritisation technique which classify nodes into four priority groups: Critical, High, Medium, and Low priorities. These priority groups help in prioritising both message delivery and message status notifications for devices with low battery energy. The DS‐OLSRMP was implemented in a Network Simulator, version 3.29 and compared with DS‐OLSR, OLSRv1 and OLSRv2. The simulation results show that DS‐OLSRMP performs better than DS‐OLSR, OLSRv1 and OLSRv2 in terms of energy conservation and packets delivery in the simulation of both sparse and dense network scenarios

    SPARC 2019 Fake news & home truths : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2019 SPARC conference. This year we not only celebrate the work of our PGRs but also our first ever Doctoral School Best Supervisor awards, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 90 presenters, the conference truly showcases a vibrant, innovative and collaborative PGR community at Salford. These abstracts provide a taster of the inspiring, relevant and impactful research in progress, and provide delegates with a reference point for networking and initiating critical debate. Find an abstract that interests you, and say “Hello” to the author. Who knows what might result from your conversation? With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research needs interdisciplinary collaboration. This is recognised and rewarded by all major research funders. Engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers. Even better, our free ice cream van means that you can have those conversations while enjoying a refreshing ice lolly
    corecore