11 research outputs found

    Growth and dislocation studies of β-HMX

    Get PDF
    Background: The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in “hot-spot” detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). Results: The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Conclusions: Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]

    Mechanical properties of β-HMX

    Get PDF
    Background: For a full understanding of the mechanical properties of a material, it is essential to understand the defect structures and associated properties and microhardness indentation is a technique that can aid this understanding. Results: The Vickers hardness on (010), {011} and {110} faces lay in the range of 304-363 MPa. The Knoop Hardnesses on the same faces lay in the range 314-482 MPa. From etching of three indented surfaces, the preferred slip planes have been identified as (001) and (101). For a dislocation glide, the most likely configuration for dislocation movement on the (001) planes is (001) [100] (|b| = 0.65 nm) and for the (101) plane as (101) 101~(|b| = 1.084 nm) although (101) [010] (|b| = 1.105 nm) is possible. Tensile testing showed that at a stress value of 2.3 MPa primary twinning occurred and grew with increasing stress. When the stress was relaxed, the twins decreased in size, but did not disappear. The twinning shear strain was calculated to be 0.353 for the (101) twin plane. Conclusions: HMX is considered to be brittle, compared to other secondary explosives. Comparing HMX with a range of organic solids, the values for hardness numbers are similar to those of other brittle systems. Under the conditions developed beneath a pyramidal indenter, dislocation slip plays a major part in accommodating the local deformation stresses. © 2015 Gallagher et al.; licensee Springer
    corecore