73 research outputs found
OBEDIS Core Variables Project : European Expert Guidelines on a Minimal Core Set of Variables to Include in Randomized, Controlled Clinical Trials of Obesity Interventions
Heterogeneity of interindividual and intraindividual responses to interventions is often observed in randomized, controlled trials for obesity. To address the global epidemic of obesity and move toward more personalized treatment regimens, the global research community must come together to identify factors that may drive these heterogeneous responses to interventions. This project, called OBEDIS (OBEsity Diverse Interventions Sharing - focusing on dietary and other interventions), provides a set of European guidelines for a minimal set of variables to include in future clinical trials on obesity, regardless of the specific endpoints. Broad adoption of these guidelines will enable researchers to harmonize and merge data from multiple intervention studies, allowing stratification of patients according to precise phenotyping criteria which are measured using standardized methods. In this way, studies across Europe may be pooled for better prediction of individuals' responses to an intervention for obesity - ultimately leading to better patient care and improved obesity outcomes.Peer reviewe
Recommended from our members
Proton aurora and relativistic electron microbursts scattered by electromagnetic ion cyclotron waves
Charged particle precipitation from Earth’s magnetosphere results in stunning displays of the aurora and energy transfer into the atmosphere. Some of this precipitation is caused by wave-particle interactions. In this study, we present an example of a wave-particle interaction between Electromagnetic Ion Cyclotron waves, and magnetospheric protons and electrons. This interaction resulted in a co-located isolated proton aurora and relativistic electron microbursts. While isolated proton aurora is widely believed to be caused by Electromagnetic Ion Cyclotron waves, this unique observation suggests that these waves can also scatter relativistic electron microbursts. Theoretically, nonlinear interactions between Electromagnetic Ion Cyclotron waves and electrons are necessary to produce the intense sub-second microburst precipitation. Lastly, detailed analysis of the auroral emissions suggests that no chorus waves were present during the event. This is in contrast to the most commonly associated driver of microbursts, whistler mode chorus waves, and supports other less commonly considered driving mechanisms.
</p
The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity
The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD. © 2014 Tourette et al
A cognitive prosthesis for complex decision-making
While simple heuristics can be ecologically rational and effective in naturalistic decision making contexts, complex situations require analytical decision making strategies, hypothesis-testing and learning. Sub-optimal decision strategies – using simplified as opposed to analytic decision rules – have been reported in domains such as healthcare, military operational planning, and government policy making. We investigate the potential of a computational toolkit called “IMAGE” to improve decision-making by developing structural knowledge and increasing understanding of complex situations. IMAGE is tested within the context of a complex military convoy management task through (a) interactive simulations, and (b) visualization and knowledge representation capabilities. We assess the usefulness of two versions of IMAGE (desktop and immersive) compared to a baseline. Results suggest that the prosthesis helped analysts in making better decisions, but failed to increase their structural knowledge about the situation once the cognitive prosthesis is removed
Geography and island geomorphology shape fish assemblage structure on isolated coral reef systems
We quantify the relative importance of multi-scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo-Pacific biogeographical provinces. Large (>30 cm), functionally-important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126x106km(2)). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining similar to 53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local-scale variables, 'distance from port', a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re-emphasise the importance that historical processes play in structuring contemporary biotic communities
- …