1,884 research outputs found
Fatigue and fracture: Overview
A brief overview of the status of the fatigue and fracture programs is given. The programs involve the development of appropriate analytic material behavior models for cyclic stress-strain-temperature-time/cyclic crack initiation, and cyclic crack propagation. The underlying thrust of these programs is the development and verification of workable engineering methods for the calculation, in advance of service, of the local cyclic stress-strain response at the critical life governing location in hot section compounds, and the resultant crack initiation and crack growth lifetimes
Life prediction and constitutive behavior
One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since it is these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts. It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades
Cyclic creep rupture behavior of three high temperature alloys
Tensile stress and tensile time-to-rupture relation determined from cyclic creep rupture tests on high temperature titanium alloy, cobalt alloy, and stainless stee
Engine cyclic durability by analysis and material testing
The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor liner; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods
Strainrange partitioning behavior of the nickel-base superalloys, Rene' 80 and in 100
A study was made to assess the ability of the method of Strainrange Partitioning (SRP) to both correlate and predict high-temperature, low cycle fatigue lives of nickel base superalloys for gas turbine applications. The partitioned strainrange versus life relationships for uncoated Rene' 80 and cast IN 100 were also determined from the ductility normalized-Strainrange Partitioning equations. These were used to predict the cyclic lives of the baseline tests. The life predictability of the method was verified for cast IN 100 by applying the baseline results to the cyclic life prediction of a series of complex strain cycling tests with multiple hold periods at constant strain. It was concluded that the method of SRP can correlate and predict the cyclic lives of laboratory specimens of the nickel base superalloys evaluated in this program
The strainrange partitioning behavior of an advanced gas turbine disk alloy, AF2-1DA
The low-cycle, creep-fatigue characteristics of the advanced gas turbine disk alloy, AF2-1DA have been determined at 1400 F and are presented in terms of the method of strainrange partitioning (SRP). The mean stresses which develop in the PC and CP type SRP cycles at the lowest inelastic strainrange were observed to influence the cyclic lives to a greater extent than the creep effects and hence interfered with a conventional interpretation of the results by SRP. A procedure is proposed for dealing with the mean stress effects on life which is compatible with SRP
Bending fatigue of electron-beam-welded foils. Application to a hydrodynamic air bearing in the Chrysler/DOE upgraded automotive gas tubine engine
A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F)
Tensile and Compressive Constitutive Response of 316 Stainless Steel at Elevated Temperatures
Creep rate in compression is lower by factors of 2 to 10 than in tension if the microstructure of the two specimens is the same and are tested at equal temperatures and equal but opposite stresses. Such behavior is characteristic for monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history
An update of the total-strain version of SRP
An updated procedure for characterizing an alloy and predicting cyclic life by using the total strain range version of strainrange partitioning (TS-SRP) has been developed. The principal feature of this update is a new procedure for determining the intercept of time dependent elastic strain range versus cyclic life lines. The procedure is based on an established relation between failure and the cyclic stress-strain response of an alloy. The stress-strain response is characterized by empirical equations presented in this report. These equations were determined with the aid of a cyclic constitutive model. The procedures presented herein reduce the testing required to characterize an alloy. Failure testing is done only in the high strain, low life regime; cyclic stress-strain response is determined from tests conducted in both the high and low strain regimes. These tests are carried out to stability of the stress-strain hysteresis loop but not to failure. Thus both the time and costs required to characterize an alloy are greatly reduced. This approach was evaluated and verified for two nickel base superalloys, AF2-1DA and Inconel 718
Application of strainrange partitioning to the prediction of creep-fatigue lives of AISI types 304 and 316 stainless steel
As a demonstration of the predictive capabilities of the method of Strainrange Partitioning, published high-temperature, low cycle, creep-fatigue test results on AISI Types 304 and 316 stainless steel were analyzed and calculated, cyclic lives compared with observed lives. Predicted lives agreed with observed lives within factors of two for 76 percent, factors of three for 93 percent, and factors of four for 98 percent of the laboratory tests analyzed. Agreement between observed and predicted lives is judged satisfactory considering that the data are associated with a number of variables (two alloys, several heats and heat treatments, a range of temperatures, different testing techniques, etc.) that are not directly accounted for in the calculations
- …