28 research outputs found

    Extracellular Vesicles from Pseudomonas aeruginosa Suppress MHC-Related Molecules in Human Lung Macrophages

    Get PDF
    Pseudomonas aeruginosa, a Gram-negative bacterium, is one of the most common pathogens colonizing the lungs of cystic fibrosis patients. P. aeruginosa secrete extracellular vesicles (EVs) that contain LPS and other virulence factors that modulate the host\u27s innate immune response, leading to an increased local proinflammatory response and reduced pathogen clearance, resulting in chronic infection and ultimately poor patient outcomes. Lung macrophages are the first line of defense in the airway innate immune response to pathogens. Proper host response to bacterial infection requires communication between APC and T cells, ultimately leading to pathogen clearance. In this study, we investigate whether EVs secreted from P. aeruginosa alter MHC Ag expression in lung macrophages, thereby potentially contributing to decreased pathogen clearance. Primary lung macrophages from human subjects were collected via bronchoalveolar lavage and exposed to EVs isolated from P. aeruginosa in vitro. Gene expression was measured with the NanoString nCounter gene expression assay. DNA methylation was measured with the EPIC array platform to assess changes in methylation. P. aeruginosa EVs suppress the expression of 11 different MHC-associated molecules in lung macrophages. Additionally, we show reduced DNA methylation in a regulatory region of gene complement factor B (CFB) as the possible driving mechanism of widespread MHC gene suppression. Our results demonstrate MHC molecule downregulation by P. aeruginosa-derived EVs in lung macrophages, which is consistent with an immune evasion strategy employed by a prokaryote in a host-pathogen interaction, potentially leading to decreased pulmonary bacterial clearance

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    Recommendations for accelerating open preprint peer review to improve the culture of science

    Get PDF
    Peer review is an important part of the scientific process, but traditional peer review at journals is coming under increased scrutiny for its inefficiency and lack of transparency. As preprints become more widely used and accepted, they raise the possibility of rethinking the peer-review process. Preprints are enabling new forms of peer review that have the potential to be more thorough, inclusive, and collegial than traditional journal peer review, and to thus fundamentally shift the culture of peer review toward constructive collaboration. In this Consensus View, we make a call to action to stakeholders in the community to accelerate the growing momentum of preprint sharing and provide recommendations to empower researchers to provide open and constructive peer review for preprints

    Recommendations for accelerating open preprint peer review to improve the culture of science

    Get PDF
    Peer review is an important part of the scientific process, but traditional peer review at journals is coming under increased scrutiny for its inefficiency and lack of transparency. As preprints become more widely used and accepted, they raise the possibility of rethinking the peer-review process. Preprints are enabling new forms of peer review that have the potential to be more thorough, inclusive, and collegial than traditional journal peer review, and to thus fundamentally shift the culture of peer review toward constructive collaboration. In this Consensus View, we make a call to action to stakeholders in the community to accelerate the growing momentum of preprint sharing and provide recommendations to empower researchers to provide open and constructive peer review for preprints

    DORA Advances in Research Evaluation slides

    Full text link

    <b>NWB2023_Introducing ReformScape an online tool mapping the global research assessment reform landscape</b>

    Full text link
    Over the past decade, international efforts to reform how research is recognized and rewarded in academia have gathered substantial momentum. Animated by concerns that overly-narrow criteria and indicators of research quality are creating unsustainable and unequal career systems and narrowing knowledge production, various reform movements focusing on responsible metrics, research integrity, open research, Diversity, Equity and Inclusion have coalesced under the label of Responsible Research Assessment (RRA).Reform of research assessment remains however a challenging process because it impacts established processes, cultures and norms. Despite the growing recognition of the need for change, organisations embarking on reforms may not always be sure where is the best place to start. ReformScape aims to help them overcome that hesitancy. ReformScape is an online tool for exploring how academic research institutions around the world have introduced and implemented new responsible research assessment practices. The tool enables more experienced institutions to share what they are doing with the wider world, while helping other institutions gain an overview of global developments in assessment reform. It’s populated with policies, roadmaps and other documents from hundreds of institutions all over the world covering innovations in academic hiring, promotion and tenure assessments, together with expertly curated insights to help users discover and discuss what’s possible.This poster presentation will introduce ReformScape, describing its origins, the co-creation process behind it, current coverage and scope, and potential for further development. It will provide screenshots of the tool, as well as QR codes linking the NWB audience directly to the tool.</p

    Pulmonary microRNA profiling: implications in upper lobe predominant lung disease

    Full text link
    Abstract Background Numerous pulmonary diseases manifest with upper lobe predominance including cystic fibrosis, smoking-related chronic obstructive pulmonary disease, and tuberculosis. Zonal hypoxia, characteristic of these pulmonary maladies, and oxygen stress in general is known to exert profound effects on various important aspects of cell biology. Lung macrophages are major participants in the pulmonary innate immune response and regional differences in macrophage responsiveness to hypoxia may contribute in the development of lung disease. MicroRNAs are ubiquitous regulators of human biology and emerging evidence indicates altered microRNA expression modulates respiratory disease processes. The objective of this study is to gain insight into the epigenetic and cellular mechanisms influencing regional differences in lung disease by investigating effect of hypoxia on regional microRNA expression in the lung. All studies were performed using primary alveolar macrophages (n = 10) or bronchoalveolar lavage fluid (n = 16) isolated from human subjects. MicroRNA was assayed via the NanoString nCounter microRNA assay. Results Divergent molecular patterns of microRNA expression were observed in alternate lung lobes, specifically noted was disparate expression of miR-93 and miR-4454 in alveolar macrophages along with altered expression of miR-451a and miR-663a in bronchoalveolar lavage fluid. Gene ontology was used to identify potential downstream targets of divergent microRNAs. Targets include cytokines and matrix metalloproteinases, molecules that could have a significant impact on pulmonary inflammation and fibrosis. Conclusions Our findings show variant regional microRNA expression associated with hypoxia in alveolar macrophages and BAL fluid in the lung—upper vs lower lobe. Future studies should address whether these specific microRNAs may act intracellularly, in a paracrine/endocrine manner to direct the innate immune response or may ultimately be involved in pulmonary host-to-pathogen trans-kingdom cross-talk

    Exposure to extracellular vesicles from Pseudomonas aeruginosa result in loss of DNA methylation at enhancer and DNase hypersensitive site regions in lung macrophages

    Full text link
    Various pathogens use differing strategies to evade host immune response including modulating the host’s epigenome. Here, we investigate if EVs secreted from P. aeruginosa alter DNA methylation in human lung macrophages, thereby potentially contributing to a dysfunctional innate immune response. Using a genome-wide DNA methylation approach, we demonstrate that P. aeruginosa EVs alter certain host cell DNA methylation patterns. We identified 1,185 differentially methylated CpGs (FDR < 0.05), which were significantly enriched for distal DNA regulatory elements including enhancer regions and DNase hypersensitive sites. Notably, all but one of the 1,185 differentially methylated CpGs were hypomethylated in association with EV exposure. Significantly hypomethylated CpGs tracked to genes including AXL, CFB and CCL23. Gene expression analysis identified 310 genes exhibiting significantly altered expression 48 hours post P. aeruginosa EV treatment, with 75 different genes upregulated and 235 genes downregulated. Some CpGs associated with cytokines such as CSF3 displayed strong negative correlations between DNA methylation and gene expression. Our infection model illustrates how secreted products (EVs) from bacteria can alter DNA methylation of the host epigenome. Changes in DNA methylation in distal DNA regulatory regions in turn can modulate cellular gene expression and potential downstream cellular processes
    corecore