4 research outputs found

    Transcatheter aortic valve replacement using the SAPIEN 3 valve versus surgical aortic valve replacement using the rapid deployment INTUITY valve

    No full text
    Objectives:\bf Objectives: Little data have been published on the midterm effect of transapical/transfemoral-transcatheter aortic valve replacement (TA-/TF-TAVR) using the Edwards SAPIEN 3 valve (S3). We aimed to compare the outcomes after TA-/TF-TAVR utilizing the S3 (TA-/TF-S3) valve with those after surgical aortic valve replacement utilizing the rapid deployment Edwards INTUITY valve (RD-SAVR). Methods:\bf Methods: Between March 2012 and April 2018, 122 patients with aortic stenosis underwent TA-S3, 77 patients underwent TF-S3 and 182 patients underwent RD-SAVR through partial sternotomy at our institution. We conducted clinical and echocardiographic midterm follow-ups. The primary outcomes of the study were the incidence of new pacemakers permanent pacemaker implantation (PPI), the occurrence of paravalvular leakage (PVL) and the hemodynamic performance of the valves. Results:\bf Results: All study groups were at intermediate surgical risk. The 30-day all-cause mortality and stroke rates in the TA-S3, TF-S3, and RD-SAVR groups were 4.1% and 1.6%, 3.9% and 2.6%, and 3.8% and 2.2%, respectively. The RD-SAVR group had significantly smaller PVL and PPI rates than did the TA-/TF-S3 group (p\it p < .0001). At the discharge, the one-year postprocedure mean gradients were 9 ±\pm 5.1/10 ±\pm 4.5 mmHg, 11 ±\pm 4.1/12 ±\pm 3.8 mmHg, and 10.1 ±\pm 4.3/10.4 ±\pm 2.6 mmHg in the TA-S3, TF-S3, and RD-SAVR groups, respectively. Midterm valve thrombosis, Re-TAVR/SVAR were low and similar among the study groups, whereas endocarditis was higher in the TAVR group. Conclusion:\bf Conclusion: RD-SAVR was superior to TA-/TF-S3 in the PVL and PPI rates. We observed similar early outcomes and valve hemodynamics. The endocarditis was higher in the TAVR group

    Ergebnisse nach Transkatheter-Aortenklappenersatz bei Àlteren Patienten

    No full text
    Background\bf Background The prevalence of aortic valve stenosis is increasing due to the continuously growing geriatric population. Data on procedural success and mortality of very old patients are sparse, raising the question of when this population may be deemed as "too old even for transcatheter aortic valve replacement (TAVR)". We, therefore, sought to evaluate the influence of age on outcome after TAVR and the impact of direct implantation. Methods\bf Methods The data of 394 consecutive patients undergoing TF-TAVR were analyzed. Patients were divided into four age groups: ≀75 (group 1, n\it n = 28), 76–80 (group 2, n\it n = 107), 81–85 (group 3, n\it n = 148), and >85 (group 4, n\it n = 111) years. Direct implantation was performed when possible according to current recommendations. Survival was evaluated by Kaplan–Meier analysis. Results\bf Results Mortality at 30 days and 1 year was not significantly different between the four age groups (3.6 vs. 6.7 vs. 5.4 vs. 2.7% and 7.6 vs. 17 vs. 14.5 vs. 13%m respectively, log-rank p\it p = 0.59). Direct implantation without balloon aortic valvuloplasty was more frequently performed on patients aged >85 vs. ≀85 years (33.3 vs. 14.1%, p\it p < 0.001). the incidence of procedural complications frequently associated with advanced age (stroke, vascular complications) was not significantly increased in group 4. \ (\bf Conclusion\) Outcome after TF-TAVR is comparable among different age cohorts, even in very old patients. Direct implantation simplifies the procedure and could therefore play a role in reducing the incidence of peri-interventional complications in patients of advanced age.Hintergrund\bf Hintergrund Die PrĂ€valenz der Aortenklappenstenose steigt durch eine kontinuierlich wachsende geriatrische Bevölkerung. Daten ĂŒber prozeduralen Erfolg sowie MortalitĂ€t von sehr alten Patienten sind gering, sodass sich die Frage stellt, wann diese Population "als bereits zu alt" fĂŒr einen Transkatheter-Aortenklappenersatz (TAVR) anzusehen wĂ€re. Ziel dieser Studie war es, den Einfluss der direkten Implantation auf die Ergebnisse nach transfemoraler (TF-)TAVR bei Patienten in fortgeschrittenem Alter zu evaluieren. Methoden\bf Methoden Dazu wurden die Daten von 394 konsekutiven Patienten nach TF-TAVR ermittelt. Die Patienten wurden in 4 Altersgruppen eingeteilt: ≀75 Jahre (Gruppe 1, n\it n = 28), 76–80 Jahre (Gruppe 2, n\it n = 107), 81–85 Jahre (Gruppe 3, n\it n = 148) und >85 Jahre (Gruppe 4, n\it n = 111). Sofern es die aktuellen Empfehlungen erlaubten, wurde eine direkte Implantation durchgefĂŒhrt. Das Überleben wurde mittels Kaplan–Meier-Analyse evaluiert. Ergebnisse\bf Ergebnisse Zwischen den 4 Altersgruppen waren keine signifikanten Unterschiede der MortalitĂ€t nach 30 Tagen und nach einem Jahr zu verzeichnen (entsprechend 3,6 vs. 6,7 vs. 5,4 vs. 2,7 % und 7,6 vs. 17 vs. 14,5 vs. 13 %; p\it p = 0,59 fĂŒr Log-Rank-Test). Eine direkte Implantation ohne Ballonvalvuloplastie wurde bei Patienten >85 Jahre hĂ€ufiger durchgefĂŒhrt als ≀85 Jahre (33,3 vs. 14,1 %; p\it p < 0,001). Die Inzidenz von hĂ€ufig mit fortgeschrittenem Patientenalter assoziierten prozeduralen Komplikationen (Schlaganfall, vaskulĂ€re Komplikationen) war in der Gruppe 4 nicht signifikant erhöht. Schlussfolgerung\bf Schlussfolgerung In verschiedenen Alterskollektiven zeigen sich vergleichbare Ergebnisse nach TF-TAVR, dies gilt sogar fĂŒr Patienten sehr hohen Alters. Die direkte Implantation kann die Prozedur vereinfachen und zu einer konsekutiven Reduktion der Inzidenz von periprozeduralen Komplikationen bei Patienten mit fortgeschrittenem Alter fĂŒhren

    Modulation of titin-based stiffness in hypertrophic cardiomyopathy via protein kinase D

    No full text
    The giant protein titin performs structure-preserving functions in the sarcomere and is important for the passive stiffness (FpassiveF_{passive}) of cardiomyocytes. Protein kinase D (PKD) enzymes play crucial roles in regulating myocardial contraction, hypertrophy, and remodeling. PKD phosphorylates myofilament proteins, but it is not known whether the giant protein titin is also a PKD substrate. Here, we aimed to determine whether PKD phosphorylates titin and thereby modulates cardiomyocyte FpassiveF_{passive} in normal and failing myocardium. The phosphorylation of titin was assessed in cardiomyocyte-specific PKD knock-out mice (cKO) and human hearts using immunoblotting with a phosphoserine/threonine and a phosphosite-specific titin antibody. PKD-dependent site-specific titin phosphorylation in vivo\textit {in vivo} was quantified by mass spectrometry using stable isotope labeling by amino acids in cell culture (SILAC) of SILAC-labeled mouse heart protein lysates that were mixed with lysates isolated from hearts of either wild-type control (WT) or cKO mice. FpassiveF_{passive} of single permeabilized cardiomyocytes was recorded before and after PKD and HSP27 administration. All-titin phosphorylation was reduced in cKO compared to WT hearts. Multiple conserved PKD-dependent phosphosites were identified within the Z-disk, A-band and M-band regions of titin by quantitative mass spectrometry, and many PKD-dependent phosphosites detected in the elastic titin I-band region were significantly decreased in cKO. Analysis of titin site-specific phosphorylation showed unaltered or upregulated phosphorylation in cKO compared to matched WT hearts. FpassiveF_{passive} was elevated in cKO compared to WT cardiomyocytes and PKD administration lowered FpassiveF_{passive} of WT and cKO cardiomyocytes. Cardiomyocytes from hypertrophic cardiomyopathy (HCM) patients showed higher FpassiveF_{passive} compared to control hearts and significantly lower FpassiveF_{passive} after PKD treatment. In addition, we found higher phosphorylation at CaMKII-dependent titin sites in HCM compared to control hearts. Expression and phosphorylation of HSP27, a substrate of PKD, were elevated in HCM hearts, which was associated with increased PKD expression and phosphorylation. The relocalization of HSP27 in HCM away from the sarcomeric Z-disk and I-band suggested that HSP27 failed to exert its protective action on titin extensibility. This protection could, however, be restored by administration of HSP27, which significantly reduced FpassiveF_{passive} in HCM cardiomyocytes. These findings establish a previously unknown role for PKDin regulating diastolic passive properties of healthy and diseased hearts

    Enhanced cardiomyocyte function in hypertensive rats with diastolic dysfunction and human heart failure patients after acute treatment with soluble guanylyl cyclase (sGC) activator

    No full text
    Aims:\textbf {Aims:} Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). Methods:\textbf {Methods:} Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo\textit {in vivo} with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (FpassiveF_{passive}) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium–calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. Results:\textbf {Results:} High cardiomyocyte FpassiveF_{passive} was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as FpassiveF_{passive}, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high FpassiveF_{passive}, reduced titin phosphorylation, dysregulation of the NO–sGC–cGMP–PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. Conclusion:\textbf {Conclusion:} Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC–PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling
    corecore