3 research outputs found
Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors
Brain tumors are the most common solid tumors and the leading cause of
cancer-related death among children. Tumor segmentation is essential in
surgical and treatment planning, and response assessment and monitoring.
However, manual segmentation is time-consuming and has high inter-operator
variability, underscoring the need for more efficient methods. We compared two
deep learning-based 3D segmentation models, DeepMedic and nnU-Net, after
training with pediatric-specific multi-institutional brain tumor data using
based on multi-parametric MRI scans.Multi-parametric preoperative MRI scans of
339 pediatric patients (n=293 internal and n=46 external cohorts) with a
variety of tumor subtypes, were preprocessed and manually segmented into four
tumor subregions, i.e., enhancing tumor (ET), non-enhancing tumor (NET), cystic
components (CC), and peritumoral edema (ED). After training, performance of the
two models on internal and external test sets was evaluated using Dice scores,
sensitivity, and Hausdorff distance with reference to ground truth manual
segmentations. Dice score for nnU-Net internal test sets was (mean +/- SD
(median)) 0.9+/-0.07 (0.94) for WT, 0.77+/-0.29 for ET, 0.66+/-0.32 for NET,
0.71+/-0.33 for CC, and 0.71+/-0.40 for ED, respectively. For DeepMedic the
Dice scores were 0.82+/-0.16 for WT, 0.66+/-0.32 for ET, 0.48+/-0.27, for NET,
0.48+/-0.36 for CC, and 0.19+/-0.33 for ED, respectively. Dice scores were
significantly higher for nnU-Net (p<=0.01). External validation of the trained
nnU-Net model on the multi-institutional BraTS-PEDs 2023 dataset revealed high
generalization capability in segmentation of whole tumor and tumor core with
Dice scores of 0.87+/-0.13 (0.91) and 0.83+/-0.18 (0.89), respectively.
Pediatric-specific data trained nnU-Net model is superior to DeepMedic for
whole tumor and subregion segmentation of pediatric brain tumors
The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
Pediatric tumors of the central nervous system are the most common cause of
cancer-related death in children. The five-year survival rate for high-grade
gliomas in children is less than 20\%. Due to their rarity, the diagnosis of
these entities is often delayed, their treatment is mainly based on historic
treatment concepts, and clinical trials require multi-institutional
collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a
landmark community benchmark event with a successful history of 12 years of
resource creation for the segmentation and analysis of adult glioma. Here we
present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which
represents the first BraTS challenge focused on pediatric brain tumors with
data acquired across multiple international consortia dedicated to pediatric
neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on
benchmarking the development of volumentric segmentation algorithms for
pediatric brain glioma through standardized quantitative performance evaluation
metrics utilized across the BraTS 2023 cluster of challenges. Models gaining
knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training
data will be evaluated on separate validation and unseen test mpMRI dataof
high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023
challenge brings together clinicians and AI/imaging scientists to lead to
faster development of automated segmentation techniques that could benefit
clinical trials, and ultimately the care of children with brain tumors
Recommended from our members
Automated tumor segmentation and brain tissue extraction from multiparametric MRI of pediatric brain tumors: A multi-institutional study.
BACKGROUND: Brain tumors are the most common solid tumors and the leading cause of cancer-related death among all childhood cancers. Tumor segmentation is essential in surgical and treatment planning, and response assessment and monitoring. However, manual segmentation is time-consuming and has high interoperator variability. We present a multi-institutional deep learning-based method for automated brain extraction and segmentation of pediatric brain tumors based on multi-parametric MRI scans. METHODS: Multi-parametric scans (T1w, T1w-CE, T2, and T2-FLAIR) of 244 pediatric patients ( n = 215 internal and n = 29 external cohorts) with de novo brain tumors, including a variety of tumor subtypes, were preprocessed and manually segmented to identify the brain tissue and tumor subregions into four tumor subregions, i.e., enhancing tumor (ET), non-enhancing tumor (NET), cystic components (CC), and peritumoral edema (ED). The internal cohort was split into training ( n = 151), validation ( n = 43), and withheld internal test ( n = 21) subsets. DeepMedic, a three-dimensional convolutional neural network, was trained and the model parameters were tuned. Finally, the network was evaluated on the withheld internal and external test cohorts. RESULTS: Dice similarity score (median ± SD) was 0.91 ± 0.10/0.88 ± 0.16 for the whole tumor, 0.73 ± 0.27/0.84 ± 0.29 for ET, 0.79 ± 19/0.74 ± 0.27 for union of all non-enhancing components (i.e., NET, CC, ED), and 0.98 ± 0.02 for brain tissue in both internal/external test sets. CONCLUSIONS: Our proposed automated brain extraction and tumor subregion segmentation models demonstrated accurate performance on segmentation of the brain tissue and whole tumor regions in pediatric brain tumors and can facilitate detection of abnormal regions for further clinical measurements