757 research outputs found

    Improving the entanglement transfer from continuous variable systems to localized qubits using non Gaussian states

    Full text link
    We investigate the entanglement transfer from a bipartite continuous-variable (CV) system to a pair of localized qubits assuming that each CV mode couples to one qubit via the off-resonance Jaynes-Cummings interaction with different interaction times for the two subsystems. First, we consider the case of the CV system prepared in a Bell-like superposition and investigate the conditions for maximum entanglement transfer. Then we analyze the general case of two-mode CV states that can be represented by a Schmidt decomposition in the Fock number basis. This class includes both Gaussian and non Gaussian CV states, as for example twin-beam (TWB) and pair-coherent (TMC, also known as two-mode-coher ent) states respectively. Under resonance conditions, equal interaction times for both qubits and different initial preparations, we find that the entanglement transfer is more efficient for TMC than for TWB states. In the perspective of applications such as in cavity QED or with superconducting qubits, we analyze in details the effects of off-resonance interactions (detuning) and different interaction times for the two qubits, and discuss conditions to preserve the entanglement transfer.Comment: revised version, 11 pages, 7 figures (few of them low-res

    Polarization Squeezing of Continuous Variable Stokes Parameters

    Get PDF
    We report the first direct experimental characterization of continuous variable quantum Stokes parameters. We generate a continuous wave light beam with more than 3 dB of simultaneous squeezing in three of the four Stokes parameters. The polarization squeezed beam is produced by mixing two quadrature squeezed beams on a polarizing beam splitter. Depending on the squeezed quadrature of these two beams the quantum uncertainty volume on the Poincar\'{e} sphere became a `cigar' or `pancake'-like ellipsoid.Comment: 4 pages, 5 figure

    Spin-spin interaction and spin-squeezing in an optical lattice

    Get PDF
    We show that by displacing two optical lattices with respect to each other, we may produce interactions similar to the ones describing ferro-magnetism in condensed matter physics. We also show that particularly simple choices of the interaction lead to spin-squeezing, which may be used to improve the sensitivity of atomic clocks. Spin-squeezing is generated even with partially, and randomly, filled lattices, and our proposal may be implemented with current technology.Comment: 4 pages, including 4 figure

    Entanglement and spin squeezing in the two-atom Dicke model

    Full text link
    We analyze the relation between the entanglement and spin-squeezing parameter in the two-atom Dicke model and identify the source of the discrepancy recently reported by Banerjee and Zhou et al that one can observe entanglement without spin squeezing. Our calculations demonstrate that there are two criteria for entanglement, one associated with the two-photon coherences that create two-photon entangled states, and the other associated with populations of the collective states. We find that the spin-squeezing parameter correctly predicts entanglement in the two-atom Dicke system only if it is associated with two-photon entangled states, but fails to predict entanglement when it is associated with the entangled symmetric state. This explicitly identifies the source of the discrepancy and explains why the system can be entangled without spin-squeezing. We illustrate these findings in three examples of the interaction of the system with thermal, classical squeezed vacuum and quantum squeezed vacuum fields.Comment: 7 pages, 1 figur

    Coupling of effective one-dimensional two-level atoms to squeezed light

    Full text link
    A cavity QED system is analyzed which duplicates the dynamics of a two-level atom in free space interacting exclusively with broadband squeezed light. We consider atoms in a three or four-level Lambda-configuration coupled to a high-finesse optical cavity which is driven by a squeezed light field. Raman transitions are induced between a pair of stable atomic ground states via the squeezed cavity mode and coherent driving fields. An analysis of the reduced master equation for the atomic ground states shows that a three-level atomic system has insufficient parameter flexibility to act as an effective two-level atom interacting exclusively with a squeezed reservoir. However, the inclusion of a fourth atomic level, coupled dispersively to one of the two ground states by an auxiliary laser field, introduces an extra degree of freedom and enables the desired interaction to be realised. As a means of detecting the reduced quadrature decay rate of the effective two-level system, we examine the transmission spectrum of a weak coherent probe field incident upon the cavity

    Simulations and Experiments on Polarisation Squeezing in Optical Fibre

    Get PDF
    We investigate polarisation squeezing of ultrashort pulses in optical fibre, over a wide range of input energies and fibre lengths. Comparisons are made between experimental data and quantum dynamical simulations, to find good quantitative agreement. The numerical calculations, performed using both truncated Wigner and exact +P+P phase-space methods, include nonlinear and stochastic Raman effects, through coupling to phonons variables. The simulations reveal that excess phase noise, such as from depolarising GAWBS, affects squeezing at low input energies, while Raman effects cause a marked deterioration of squeezing at higher energies and longer fibre lengths. The optimum fibre length for maximum squeezing is also calculated.Comment: 19 pages, lots of figure

    Nonlinear atom interferometer surpasses classical precision limit

    Full text link
    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest [3]. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states [4-8]. Extending quantum interferometry [9] to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the "one-axis-twisting" scheme [10] and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2dB [11-15]. The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms [16]
    • …
    corecore