7 research outputs found

    Fermi Surface of the 2D Hubbard Model at Weak Coupling

    Full text link
    We calculate the interaction-induced deformation of the Fermi surface in the two-dimensional Hubbard model within second order perturbation theory. Close to half-filling, interactions enhance anisotropies of the Fermi surface, but they never modify the topology of the Fermi surface in the weak coupling regime.Comment: 4 pages, LaTeX2e, 5 embedded EPS figures, accepted to be published in Z. Phys.

    d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model

    Full text link
    We present a systematic stability analysis for the two-dimensional Hubbard model, which is based on a new renormalization group method for interacting Fermi systems. The flow of effective interactions and susceptibilities confirms the expected existence of a d-wave pairing instability driven by antiferromagnetic spin fluctuations. More unexpectedly, we find that strong forward scattering interactions develop which may lead to a Pomeranchuk instability breaking the tetragonal symmetry of the Fermi surface.Comment: 4 pages (RevTeX), 4 eps figure

    Spectral Function of 2D Fermi Liquids

    Full text link
    We show that the spectral function for single-particle excitations in a two-dimensional Fermi liquid has Lorentzian shape in the low energy limit. Landau quasi-particles have a uniquely defined spectral weight and a decay rate which is much smaller than the quasi-particle energy. By contrast, perturbation theory and the T-matrix approximation yield spurious deviations from Fermi liquid behavior, which are particularly pronounced for a linearized dispersion relation.Comment: 6 pages, LaTeX2e, 5 EPS figure

    Renormalization group analysis of the 2D Hubbard model

    Full text link
    Salmhofer [Commun. Math. Phys. 194, 249 (1998)] has recently developed a new renormalization group method for interacting Fermi systems, where the complete flow from the bare action of a microscopic model to the effective low-energy action, as a function of a continuously decreasing infrared cutoff, is given by a differential flow equation which is local in the flow parameter. We apply this approach to the repulsive two-dimensional Hubbard model with nearest and next-nearest neighbor hopping amplitudes. The flow equation for the effective interaction is evaluated numerically on 1-loop level. The effective interactions diverge at a finite energy scale which is exponentially small for small bare interactions. To analyze the nature of the instabilities signalled by the diverging interactions we extend Salmhofers renormalization group for the calculation of susceptibilities. We compute the singlet superconducting susceptibilities for various pairing symmetries and also charge and spin density susceptibilities. Depending on the choice of the model parameters (hopping amplitudes, interaction strength and band-filling) we find commensurate and incommensurate antiferromagnetic instabilities or d-wave superconductivity as leading instability. We present the resulting phase diagram in the vicinity of half-filling and also results for the density dependence of the critical energy scale.Comment: 16 pages, RevTeX, 16 eps figure

    Niederenergie-Eigenschaften zweidimensionaler Fermi-Systeme

    No full text
    corecore