22 research outputs found

    Envelope Proteins of Jaagsiekte Sheep Retrovirus and Enzootic Nasal Tumor Virus Induce Similar Bronchioalveolar Tumors in Lungs of Mice

    No full text
    Jaagsiekte sheep retrovirus (JSRV) induces bronchioalveolar tumors in sheep and goats. Expression of the JSRV envelope (Env) protein in mouse airway epithelial cells induces similar tumors, indicating that Env expression is sufficient for tissue-specific tumor formation. Enzootic nasal tumor virus (ENTV) is related to JSRV but induces tumors in the nasal epithelium of sheep and goats. Here we found that ENTV Env can also induce tumors in mice but, unexpectedly, with a phenotype identical to that of tumors induced by the JSRV Env, indicating that factors other than Env mediate the tissue specificity of tumor induction by ENTV

    Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    No full text
    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state.McKnight Foundation (New York Stem Cell Foundation-Robertson Investigator and McKnight Scholar)JPB FoundationWhitehall FoundationKlingenstein FoundationBrain & Behavior Research Foundation (NARSAD Young Investigator Award)Alfred P. Sloan FoundationWhitehead Institute for Biomedical Research (Whitehead Career Development Chair)National Institutes of Health (U.S.) (R01-MH102441-01 (NIMH))National Institutes of Health (U.S.) (NIH grant U54-CA112967)National Institute on Aging (RF1-AG047661-01 (NIA))National Institutes of Health (U.S.) (NIH Director’s New Investigator Award DP2- DK-102256-01 (NIDDK))Medical Research Council (Great Britain) (MC-A654-5QB70)National Institute of General Medical Sciences (U.S.) (NIGMS T32GM007484

    A Circuit Mechanism for Differentiating Positive and Negative Associations

    No full text
    The ability to differentiate stimuli predicting positive or negative outcomes is critical for survival, and perturbations of emotional processing underlie many psychiatric disease states. Synaptic plasticity in the basolateral amygdala complex (BLA) mediates the acquisition of associative memories, both positive1,2 and negative3–7. Different populations of BLA neurons may encode fearful or rewarding associations8–10, but the identifying features of these populations and the synaptic mechanisms of differentiating positive and negative emotional valence have remained an enigma. Here, we show that BLA neurons projecting to the nucleus accumbens (NAc projectors) or the centromedial amygdala (CeM projectors) underwent opposing synaptic changes following fear or reward conditioning. We found that photostimulation of NAc projectors supports positive reinforcement while photostimulation of CeM projectors mediates negative reinforcement. Photoinhibition of CeM projectors impaired fear conditioning and enhanced reward conditioning. We then characterized these functionally-distinct neuronal populations by comparing their electrophysiological, morphological and genetic features. We provide a mechanistic explanation for the representation of positive and negative associations within the amygdala

    Preclinical Characterization of the Anti-Leukemia Activity of the CD33/CD16a/NKG2D Immune-Modulating TriNKET<sup>®</sup> CC-96191

    No full text
    Increasing efforts are focusing on natural killer (NK) cell immunotherapies for AML. Here, we characterized CC-96191, a novel CD33/CD16a/NKG2D immune-modulating TriNKET®. CC-96191 simultaneously binds CD33, NKG2D, and CD16a, with NKG2D and CD16a co-engagement increasing the avidity for, and activation of, NK cells. CC-96191 was broadly active against human leukemia cells in a strictly CD33-dependent manner, with maximal efficacy requiring the co-engagement of CD16a and NKG2D. A frequent CD33 single nucleotide polymorphism, R69G, reduced CC-96191 potency but not maximal activity, likely because of reduced CD33 binding. Similarly, the potency, but not the maximal activity, of CC-96191 was reduced by high concentrations of soluble CD33; in contrast, the soluble form of the NKG2D ligand MICA did not impact activity. In the presence of CD33+ AML cells, CC-96191 activated NK cells but not T cells; while maximum anti-AML efficacy was similar, soluble cytokine levels were 10- to >100-fold lower than with a CD33/CD3 bispecific antibody. While CC-96191-mediated cytolysis was not affected by ABC transporter proteins, it was reduced by anti-apoptotic BCL-2 family proteins. Finally, in patient marrow specimens, CC-96191 eliminated AML cells but not normal monocytes, suggesting selectivity of TriNKET-induced cytotoxicity toward neoplastic cells. Together, these findings support the clinical exploration of CC-96191 as in NCT04789655
    corecore