37 research outputs found

    Eclipsing Binaries with Possible Light-Time Effect

    Full text link
    The period changes of six eclipsing binaries have been studied with focus on the light-time effect. With the least squares method we also calculated parameters of such an effect and properties of the unresolved body in these systems. With these results we discussed the probability of presence of such bodies in the systems with respect to possible confirmation by another method. In two systems we also suggested the hypothesis of fourth body or magnetic activity for explanation of the "second-order variability" after subtraction of the light-time effect of the third body.Comment: 4 pages, 1 figure, 2 tables, conference proceeding

    PrkA controls peptidoglycan biosynthesisthrough the essential phosphorylation ofReoM

    Get PDF
    Peptidoglycan (PG) is the main component of bacterial cell walls and the target formany antibiotics. PG biosynthesis is tightly coordinated with cell wall growth and turnover, andmany of these control activities depend upon PASTA-domain containing eukaryotic-like serine/threonine protein kinases (PASTA-eSTK) that sense PG fragments. However, only a few PGbiosynthetic enzymes are direct kinase substrates. Here, we identify the conserved ReoM proteinas a novel PASTA-eSTK substrate in the Gram-positive pathogenListeria monocytogenes. Our datashow that the phosphorylation of ReoM is essential as it controls ClpCP-dependent proteolyticdegradation of the essential enzyme MurA, which catalyses the first committed step in PGbiosynthesis. We also identify ReoY as a second novel factor required for degradation of ClpCPsubstrates. Collectively, our data imply that the first committed step of PG biosynthesis is activatedthrough control of ClpCP protease activity in response to signals of PG homeostasis imbalance.Peer Reviewe

    A Trigger Enzyme in Mycoplasma pneumoniae: Impact of the Glycerophosphodiesterase GlpQ on Virulence and Gene Expression

    Get PDF
    Mycoplasma pneumoniae is a causative agent of atypical pneumonia. The formation of hydrogen peroxide, a product of glycerol metabolism, is essential for host cell cytotoxicity. Phosphatidylcholine is the major carbon source available on lung epithelia, and its utilization requires the cleavage of deacylated phospholipids to glycerol-3-phosphate and choline. M. pneumoniae possesses two potential glycerophosphodiesterases, MPN420 (GlpQ) and MPN566. In this work, the function of these proteins was analyzed by biochemical, genetic, and physiological studies. The results indicate that only GlpQ is an active glycerophosphodiesterase. MPN566 has no enzymatic activity as glycerophosphodiesterase and the inactivation of the gene did not result in any detectable phenotype. Inactivation of the glpQ gene resulted in reduced growth in medium with glucose as the carbon source, in loss of hydrogen peroxide production when phosphatidylcholine was present, and in a complete loss of cytotoxicity towards HeLa cells. All these phenotypes were reverted upon complementation of the mutant. Moreover, the glpQ mutant strain exhibited a reduced gliding velocity. A comparison of the proteomes of the wild type strain and the glpQ mutant revealed that this enzyme is also implicated in the control of gene expression. Several proteins were present in higher or lower amounts in the mutant. This apparent regulation by GlpQ is exerted at the level of transcription as determined by mRNA slot blot analyses. All genes subject to GlpQ-dependent control have a conserved potential cis-acting element upstream of the coding region. This element overlaps the promoter in the case of the genes that are repressed in a GlpQ-dependent manner and it is located upstream of the promoter for GlpQ-activated genes. We may suggest that GlpQ acts as a trigger enzyme that measures the availability of its product glycerol-3-phosphate and uses this information to differentially control gene expression

    Fundamental parameters of Be stars located in the seismology fields of COROT

    Get PDF
    In preparation for the COROT space mission, we determined the fundamental parameters (spectral type, temperature, gravity, vsini) of the Be stars observable by COROT in its seismology fields (64 Be stars). We applied a careful and detailed modeling of the stellar spectra, taking into account the veiling caused by the envelope, as well as the gravitational darkening and stellar flattening due to rapid rotation. Evolutionary tracks for fast rotators were used to derive stellar masses and ages. The derived parameters will be used to select Be stars as secondary targets (i.e. observed for 5 consecutive months) and short-run targets of the COROT mission. Furthermore, we note that the main part of our stellar sample is falling in the second half of the main sequence life time, and that in most cases the luminosity class of Be stars is inaccurate in characterizing their evolutionary status.Comment: 25 pages, 9 figures, Accepted for publication in A&

    Resolving Sirius-like binaries with the Hubble Space Telescope

    Get PDF
    We have imaged seventeen recently discovered Sirius-like binary systems with HST/WFPC2 and resolved the white dwarf secondary in eight cases. Most of the implied orbital periods are of order several hundred years, but in three cases (56 Per, Zeta Cygni and REJ1925-566) the periods are short enough that it may be possible to detect orbital motion within a few years. It will then be possible to derive dynamically determined masses for the white dwarfs, and potentially these stars could be used as stringent tests of the mass-radius relation and initial-final mass relation.Comment: To appear in Proceedings of the 12th European Workshop on White Dwarfs, eds. H. Shipman and J. Provenca

    Presupernova Evolution of Rotating Massive Stars I: Numerical Method and Evolution of the Internal Stellar Structure

    Full text link
    The evolution of rotating stars with zero-age main sequence (ZAMS) masses in the range 8 to 25 M_sun is followed through all stages of stable evolution. The initial angular momentum is chosen such that the star's equatorial rotational velocity on the ZAMS ranges from zero to ~ 70 % of break-up. Redistribution of angular momentum and chemical species are then followed as a consequence of rotationally induced circulation and instablities. The effects of the centrifugal force on the stellar structure are included. Uncertain mixing efficiencies are gauged by observations. We find, as noted in previous work, that rotation increases the helium core masses and enriches the stellar envelopes with products of hydrogen burning. We determine, for the first time, the angular momentum distribution in typical presupernova stars along with their detailed chemical structure. Angular momentum loss due to (non-magnetic) stellar winds and the redistribution of angular momentum during core hydrogen burning are of crucial importance for the specific angular momentum of the core. Neglecting magnetic fields, we find angular momentum transport from the core to the envelope to be unimportant after core helium burning. We obtain specific angular momenta for the iron core and overlaying material of 1E16...1E17 erg s. These values are insensitive to the initial angular momentum. They are small enough to avoid triaxial deformations of the iron core before it collapses, but could lead to neutron stars which rotate close to break-up. They are also in the range required for the collapsar model of gamma-ray bursts. The apparent discrepancy with the measured rotation rates of young pulsars is discussed.Comment: 62 pages, including 7 tables and 19 figures. Accepted by Ap

    How Listeria monocytogenes organizes its surface for virulence

    Get PDF
    Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work "behind the frontline", either supporting virulence effectors or ensuring the survival of the bacterium within its host.We apologize to authors whose relevant work could not be cited owing to space limitations. Research in the group of Molecular Microbiology is funded by the project "NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions" co-funded by Programa Operacional Regional do Norte (ON.2-O Novo Norte), under the Quadro de Referencia Estrategico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER), the Operational Competitiveness Programme (COMPETE) and FCT (Fundacdo para a Ciencia e Tecnologia), and by projects ERANet Pathogenomics LISTRESS ERA-PTG/0003/2010, PTDC/SAU-MIC/111581/2009FCOMP-FEDER, PTDC/BIA-BCM/100088/2008FCOMP-01-0124-FEDER-008860 and PTDC/BIA-BCM/111215/2009FCOMP-01-0124-FEDER-014178. Filipe Carvalho was supported by FCT doctoral grant SFRH1BD16182512009, and Sandra Sousa by the Ciencia 2008 and FCT-Investigator programs (COMPETE, POPH, and FCT)

    The cell cycle regulator GpsB functions as cytosolic adaptor for multiple cell wall enzymes

    Get PDF
    GpsB is a cytosolic protein that modulates bacterial cell wall synthesis by interacting with cytoplasmic domains of peptidoglycan synthases. Here, Cleverley et al. describe structural features that are important for these interactions, and identify new interacting partners of GpsB in three bacterial species
    corecore