28 research outputs found

    Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries

    Get PDF
    Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4\u27s suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissuespecific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly. 2017 © The Authors, some rights reserved

    Aggressive blood pressure control for chronic kidney disease unmasks moyamoya!

    Get PDF
    Hypertensive crises in children or adolescents are rare, but chronic kidney disease (CKD) is a major risk factor for occurrence. Vesicoureteral reflux nephropathy is a common cause of pediatric renal failure and is associated with hypertension. Aggressive blood pressure (BP) control has been shown to delay progression of CKD and treatment is targeted for the 50th percentile for height when compared with a target below the 90th percentile for the general pediatric hypertensive patient. We present a case of an adolescent presenting with seizures and renal failure due to a hypertensive crisis. Hypertension was thought to be secondary to CKD as she had scarred echogenic kidneys due to known reflux nephropathy. However, aggressive BP treatment improved kidney function which is inconsistent with CKD from reflux nephropathy. Secondly, aggressive BP control caused transient neurological symptoms. Further imaging identified moyamoya disease. We present this case to highlight the consideration of moyamoya as a diagnosis in the setting of renal failure and hypertensive crisis

    Loss of angiotensin II type 2 receptor improves blood pressure in elastin insufficiency

    Get PDF
    There is ample evidence supporting a role for angiotensin II type 2 receptor (A

    Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries.

    Get PDF
    Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4\u27s suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissuespecific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly. 2017 © The Authors, some rights reserved

    A new mouse model of elastin haploinsufficiency highlights the importance of elastin to vascular development and blood pressure regulation

    Get PDF
    Supravalvular aortic stenosis (SVAS) is an autosomal dominant disease resulting from elastin (ELN) haploinsufficiency. Individuals with SVAS typically develop a thickened arterial media with an increased number of elastic lamellae and smooth muscle cell (SMC) layers and stenosis superior to the aortic valve. A mouse model of SVAS (El

    Intracellular retention of mutant lysyl oxidase leads to aortic dilation in response to increased hemodynamic stress

    Get PDF
    Heterozygous missense mutations in lysyl oxidase (LOX) are associated with thoracic aortic aneurysms and dissections. To assess how LOX mutations modify protein function and lead to aortic disease, we studied the factors that influence the onset and progression of vascular aneurysms in mice bearing a Lox mutation (p.M292R) linked to aortic dilation in humans. We show that mice heterozygous for the M292R mutation did not develop aneurysmal disease unless challenged with increased hemodynamic stress. Vessel dilation was confined to the ascending aorta although both the ascending and descending aortae showed changes in vessel wall structure, smooth muscle cell number and inflammatory cell recruitment that differed between wild-type and mutant animals. Studies with isolated cells found that M292R-mutant Lox is retained in the endoplasmic reticulum and ultimately cleared through an autophagy/proteasome pathway. Because the mutant protein does not transit to the Golgi where copper incorporation occurs, the protein is never catalytically active. These studies show that the M292R mutation results in LOX loss-of-function due to a secretion defect that predisposes the ascending aorta in mice (and by extension humans with similar mutations) to arterial dilation when exposed to risk factors that impart stress to the arterial wall

    Labor induction with oxytocin in pregnant rats is not associated with oxidative stress in the fetal brain

    Get PDF
    Despite the widespread use of oxytocin for induction of labor, mechanistic insights into fetal/neonatal wellbeing are lacking because of the absence of an animal model that recapitulates modern obstetric practice. Here, we create and validate a hi-fidelity pregnant rat model that mirrors labor induction with oxytocin in laboring women. The model consists of an implantable preprogrammed microprocessor-controlled infusion pump that delivers a gradually escalating dose of intravenous oxytocin to induce birth at term gestation. We validated the model with molecular biological experiments on the uterine myometrium and telemetry-supported assessment of changes in intrauterine pressure. Finally, we applied this model to test the hypothesis that labor induction with oxytocin would be associated with oxidative stress in the newborn brain. Analysis of biomarkers of oxidative stress and changes in the expression of associated genes were no different between oxytocin-exposed and saline-treated pups, suggesting that oxytocin-induced labor was not associated with oxidative stress in the developing brain. Collectively, we provide a viable and realistic animal model for labor induction and augmentation with oxytocin that would enable new lines of investigation related to the impact of perinatal oxytocin exposure on the mother-infant dyad

    Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by KATP channel overactivity

    Get PDF
    Cantu syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in ABCC9 and KCNJ8, which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) KATP channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knockin mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved by genetic downregulation of KATP channel activity specifically in VSM, and by chronic administration of the clinically used KATP channel inhibitor, glibenclamide. These findings demonstrate that VSM KATP channel GoF underlies CS cardiac enlargement and that CS-associated abnormalities are reversible, and provide evidence of in vivo efficacy of glibenclamide as a therapeutic agent in CS

    Inhibition of NOX1 mitigates blood pressure increases in elastin insufficiency

    Get PDF
    Elastin (ELN) insufficiency leads to the cardiovascular hallmarks of the contiguous gene deletion disorder, Williams-Beuren syndrome, including hypertension and vascular stiffness. Previous studies showed that Williams-Beuren syndrome deletions, which extended to include th

    Cardiovascular consequences of KATP overactivity in Cantu syndrome

    Get PDF
    Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS
    corecore