5 research outputs found

    Induction of the synthesis of bioactive compounds of the marine alga Tetraselmis tetrathele (West) Butcher grown under salinity stress

    No full text
    This work aims at the induction of the synthesis bioactive compounds in microalgae which are used in aquacultures. Experiments were done using Tetraselmis tetrathele in batch culture for 8 days under different salinity levels. The growth of the alga at salinity 20 ppm was increased by fivefold and synthesis of carotenoids by 20-fold in comparison to the controlled. Increasing NaCl concentration resulted in increasing the fatty acid accumulation in T. tetrathele cells. Saturated fatty acids were the main constituent in the fatty acid methyl esters (FAMEs) (3.48 mg/g) at salinity 25 ppm. The predominated fatty acids were tridecylic, myristic and pentadecanoic which have potential antimicrobial activities. GC–MS analyses of the alga acetone extract grown under different NaCl concentrations were established. The results showed the presence of 18 bioactive compounds: 9-octadecenamide; in addition to the different esters of some fatty acids: hexanedioic, 1,2-cyclohexanedicarboxylic, phthalic, oleanitrile, hexanedioic and 1,2-cyclohexanedicarboxylic (71.5%; 64.9%; 55.4%; 49.6%; 18.7%; 25.2% and 14.5%, respectively). The study suggested that the alga biosynthesized various bioactive compounds under different salinity levels as defense mechanisms. Accordingly, the growth of T. tetrathele under salinity stress before being used in aquacultures is recommended

    Bioremediation of the textile waste effluent by Chlorella vulgaris

    Get PDF
    AbstractThe microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE) was investigated using 22 Central Composite Design (CCD). This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE) and the study of the best dilution of the WE for maximum biomass production and for the removal of colour and Chemical Oxygen Demand (COD) by this microalga. The cultivation of C. vulgaris, presented maximum cellular concentrations Cmax and maximum specific growth rates μmax in the wastewater concentration of 5.0% and 17.5%, respectively. The highest colour and COD removals occurred with 17.5% of textile waste effluent. The results of C. vulgaris culture in the textile waste effluent demonstrated the possibility of using this microalga for the colour and COD removal and for biomass production. There was a significant negative relationship between textile waste effluent concentration and Cmax at 0.05 level of significance. However, sodium bicarbonate concentration did not significantly influence the responses of Cmax and the removal of colour and COD

    Phytotoxic effects of seaweed mediated copper nanoparticles against the harmful alga: Lyngbya majuscula

    No full text
    In this study, copper nanoparticles (Cu-NPs) were synthesized using Corallina officinalis Linnaeus and Corallina mediterranea Areschoug aqueous extracts. Transmission Electron microscope indicated that the biosynthesized Cu-NPs averaged 12.7 nm and 13.6 nm for C. Officinalis and C. mediterranea, respectively. As reported by the FT-IR analyses, the algal extracts contain phyto-chemicals such as proteins, carboxylic acids, complex carbohydrates; these compounds will act as encapsulating agents and be reduced from copper sulphate to Cu-NPs. Energy-dispersive analyses X-ray (EDX) confirmed the copper composition in the synthesized Cu-NPs. The biosynthesized Cu-NPs arrested the growth of Lyngbya majuscula and presented in time and concentration dependent trends. At a concentration of 2 μg/mL, Cu-NPs, synthesized by C. officinalis exerted 85 ± 4% reduction of the algae dry weight. Increasing Cu-NPs concentration led to excellent reduction, which is a very promising result. Cupper-NPs synthesized by C. mediterranea produced moderate effects on L. majuscula. The results also indicated that there were sharp decreases in chlorophyll a content in L. majuscula with the increase in Cu-NPs concentrations. Using 4 μg/mL of Cu-NPs derived from C. officinalis, chlorophyll a decreased by 48 ± 5%. On the other hand, lower reductions in chlorophyll a were recorded upon using Cu-NPs synthesized using C. mediterranea (36 ± 3% and 41 ± 5% reductions at concentrations of 2 μg/mL and 4 μg/mL, respectively). The results of this study suggested that the bioactive and allelopathic compounds derived from the two algal extracts coating the (Cu2+) together with (Cu2+) are responsible for the inhibitive impacts of Cu-NPs on L. majuscula
    corecore