7 research outputs found

    Forward Simulation of Multi-Frequency Microwave Brightness Temperature over Desert Soils in Kuwait and Comparison with Satellite Observations

    No full text
    In this study, we address the variations of bare soil surface microwave brightness temperatures and evaluate the performance of a dielectric mixing model over the desert of Kuwait. We use data collected in a field survey and data obtained from NASA Soil Moisture Active Passive (SMAP), European Space Agency Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and Special Sensor Microwave/Imager (SSM/I). In situ measurements are collected during two intensive field campaigns over bare, flat, and homogeneous soil terrains in the desert of Kuwait. Despite the prevailing dry desert environment, a large range of soil moisture values was monitored, due to precedent rain events and subsequent dry down. The mean relative difference (MRD) is within the range of ±0.005 m3·m−3 during the two sampling days. This reflects consistency of soil moisture in space and time. As predicted by the model, the higher frequency channels (18 to 19 GHz) demonstrate reduced sensitivity to surface soil moisture even in the absence of vegetation, topography and heterogeneity. In the 6.9 to 10.7 GHz range, only the horizontal polarization is sensitive to surface soil moisture. Instead, at the frequency of 1.4 GHz, both polarizations are sensitive to soil moisture and span a large dynamic range as predicted by the model. The error statistics of the difference between observed satellite brightness temperature (Tb) (excluding SMOS data due to radio frequency interference, RFI) and simulated brightness temperatures (Tbs) show values of Root Mean Square Deviation (RMSD) of 5.05 K at vertical polarization and 4.88 K at horizontal polarization. Such error could be due to the performance of the dielectric mixing model, soil moisture sampling depth and the impact of parametrization of effective temperature and roughness

    GP-Based Knowledge Acquisition and Integration Mechanisms in Knowledge Management Processes

    Get PDF
    在目前的企業環境中,很多企業致力於管理和應用組織知識,來維持他們的核心能力和創造競爭優勢。有效率的管理組織知識,能減少解決問題的時間和成本,並增加組織學習和創新能力。並且,由於累積知識資源的需求,很多企業開始發展知識庫,以儲存組織及個人的知識,用來增加組織整體的效率、支援日常的運作以及企業策略的操作。 知識管理是現代的典範,可用來有效管理組織知識,進而改善組織績效。知識管理的目的是強調管理知識的流動及流程。在知識管理流程方面,主要區分為知識擷取、整合、儲存/歸類、散播和應用知識等程序。另外,資訊技術可用來協助知識管理,並能使知識管理更有效率。知識管理的主要議題之ㄧ是知識的擷取,由於目前知識來源的提供,主要是透過知識工作者,可是它對於知識工作者而言,是一種額外的負擔。因此,設計一個有效的方法來自動產生組織知識,以減輕他們的額外負擔,將是一個很重要的課題。第二個相當重要的議題是知識整合,由於不同來源的知識,可能造成組織知識的衝突,因此設計一個知識整合方法,把不同來源的知識整合成一個完整的知識,組織將會逐漸增加這方面的需求。 分類在很多應用中是常遭遇的問題,例如財務預測、疾病診斷等。在過去,分類規則常藉由決策樹的方法所產生,並用於解決分類的問題。在本論文中,提出兩個以遺傳規劃為基礎的知識擷取方法和兩個以遺傳規劃為基礎的知識整合方法,分別支援知識管理流程中的知識擷取和知識整合。 在兩個所提的知識擷取方法中,第一個方法是著重在快速和容易地找到想要的分類樹,但是,此方法可能會產生結構較複雜的分類樹。第二個方法是修正第一個方法,產生一個較精簡和應用性高的分類樹。這些所獲得的分類樹,能被轉換成規則集合,並匯入知識庫中,幫助企業決策的制定和日常的運作。 此外,在兩個所提的知識整合方法中,第一個方法,能自動結合多重的知識來源成為一個整合的知識,並可匯入知識庫中,但是此方法只考慮到單一時間點的整合。第二個方法則是可以解決不同時間點的知識整合問題。另外,本論文提出三個新的遺傳運算子,在演化過程中,可用來解決規則集合中有重複、包含和衝突等常見的問題,因而可以產生較精簡及一致性高的分類規則。最後,本論文採用信用卡資料及乳癌資料來驗證所提方法的可行性,實驗結果皆獲得良好的成效。In today’s business environment, many enterprises make efforts in managing and applying organizational knowledge to sustain their core competence and create competitive advantage. The effective management of organizational knowledge can reduce the time and cost of solving problems, improve organizational performance, and increase organizational learning as well as innovative competence. Moreover, due to the need to accumulate knowledge resources, many enterprises have devoted to developing their knowledge repositories. These repositories store organizational and individual knowledge that are used to increase overall organization efficiency, support daily operations, and implement business strategies. Knowledge management (KM) is the modern paradigm for effective management of organizational knowledge to improve organizational performance. The intent of KM is to emphasize knowledge flows and the main process of acquisition, integration, storage/categorization, dissemination, and application. Furthermore, extant information technologies can provide a way of enabling more effective knowledge management. One of the important issues in knowledge management is knowledge acquisition. It is an extra burden for knowledge workers to contribute their knowledge into repositories, such that designing an effective method for abating an extra burden to automatically generate organizational knowledge will play a critical role in knowledge management. A second rather important issue in knowledge management is knowledge integration from different knowledge sources. Designing a knowledge-integration method to combine multiple knowledge sources will gradually become a necessity for enterprises. Classification problems, such as financial prediction and disease diagnosis, are often encountered in many applications. In the past, classification trees were often generated by decision-tree methods and commonly used to solve classification problems. In this dissertation, we propose two GP-based knowledge-acquisition methods and two GP-based knowledge-integration methods to support knowledge acquisition and knowledge integration respectively in the knowledge management processes for classification tasks. In the two proposed knowledge-acquisition methods, the first one is fast and easy to find the desired classification tree. It may, however, generate a complicated classification tree. The second method then further modifies the first method and produces a more concise and applicatory classification tree than the first one. The classification tree obtained can be transferred into a rule set, which can then be fed into a knowledge base to support decision making and facilitate daily operations. Furthermore, in the two proposed knowledge-integration methods, the former method can automatically combine multiple knowledge sources into one integrated knowledge base; nevertheless, it focuses on a single time point to deal with such knowledge-integration problems. The latter method then extends the former one to handle integrating situations properly with different time points. Additionally, three new genetic operators are designed in the evolving process to remove redundancy, subsumption and contradiction, thus producing more concise and consistent classification rules than those without using them. Finally, the proposed methods are applied to credit card data and breast cancer data for evaluating their effectiveness. They are also compared with several well-known classification methods. The experimental results show the good performance and feasibility of the proposed approaches

    Forward Simulation of Multi-Frequency Microwave Brightness Temperature over Desert Soils in Kuwait and Comparison with Satellite Observations

    No full text
    © 2019 by the authors. In this study, we address the variations of bare soil surface microwave brightness temperatures and evaluate the performance of a dielectric mixing model over the desert of Kuwait. We use data collected in a field survey and data obtained from NASA Soil Moisture Active Passive (SMAP), European Space Agency Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and Special Sensor Microwave/Imager (SSM/I). In situ measurements are collected during two intensive field campaigns over bare, flat, and homogeneous soil terrains in the desert of Kuwait. Despite the prevailing dry desert environment, a large range of soil moisture values was monitored, due to precedent rain events and subsequent dry down. The mean relative difference (MRD) is within the range of ±0.005 m3·m-3 during the two sampling days. This reflects consistency of soil moisture in space and time. As predicted by the model, the higher frequency channels (18 to 19 GHz) demonstrate reduced sensitivity to surface soil moisture even in the absence of vegetation, topography and heterogeneity. In the 6.9 to 10.7 GHz range, only the horizontal polarization is sensitive to surface soil moisture. Instead, at the frequency of 1.4 GHz, both polarizations are sensitive to soil moisture and span a large dynamic range as predicted by the model. The error statistics of the difference between observed satellite brightness temperature (Tb) (excluding SMOS data due to radio frequency interference, RFI) and simulated brightness temperatures (Tbs) show values of Root Mean Square Deviation (RMSD) of 5.05 K at vertical polarization and 4.88 K at horizontal polarization. Such error could be due to the performance of the dielectric mixing model, soil moisture sampling depth and the impact of parametrization of effective temperature and roughness

    Validation of NASA SMAP Satellite Soil Moisture Products over the Desert of Kuwait

    No full text
    The goal of this study is to validate and analyze NASA’s Soil Moisture Active Passive (SMAP) products over the desert of Kuwait. The study period was between April 2015 and April 2020. The study domain includes a mission candidate calibration/validation (Cal/Val) site that comprises six permanent soil moisture stations used to verify SMAP estimates. In addition, intensive field campaigns were conducted within and around the candidate Cal/Val site during the study period to collect additional thermogravimetric samples. The mean difference (MD), root mean squared difference (RMSD), unbiased root mean square difference (ubRMSD), and correlation coefficient (R) were computed to assess the agreement between SMAP SM products and in situ observations. The comparison of the six ground station sensors’ observations with the thermogravimetric samples led to an absolute mean bias (AMB) of 0.034 m3 m−3, which was then used to calibrate the sensors and bias-correct their measurements. The temporal consistency of the readings from the test site and calibrated sensors was assessed using the mean relative difference (MRD) and its standard deviation of relative difference (SDRD). Using a sampling density analysis, it was determined that a minimum of four ground stations would be required to validate the test site. Furthermore, the consistency between SMAP satellite soil moisture data and those derived from the Soil Moisture and Ocean Salinity (SMOS) satellite operated by the European Space Agency, and their agreement with in situ samples, was analyzed. The comparison of SMAP and SMOS soil moisture data with in situ observations showed that both satellites successfully captured the spatial and temporal distribution of soil moisture. For SMAP and SMOS, the lowest ubRMSE statistics were 0.043 m3 m−3 and 0.045 m3 m−3, respectively, which are slightly higher than the mission target of 0.04 m3 m−3

    Validation of soil moisture data products from the NASA SMAP mission

    Get PDF
    NASAs Soil Moisture Active Passive (SMAP) mission has been validating its soil moisture (SM) products since the start of data production on March 31, 2015. Prior to launch, the mission defined a set of criteria for core validation sites (CVS) that enable the testing of the key mission SM accuracy requirement (unbiased root-mean-square error <0.04 m3/m3). The validation approach also includes other (sparse network) in situ SM measurements, satellite SM products, model-based SM products, and field experiments. Over the past six years, the SMAP SM products have been analyzed with respect to these reference data, and the analysis approaches themselves have been scrutinized in an effort to best understand the products performance. Validation of the most recent SMAP Level 2 and 3 SM retrieval products (R17000) shows that the L-band (1.4 GHz) radiometer-based SM record continues to meet mission requirements. The products are generally consistent with SM retrievals from the ESA Soil Moisture Ocean Salinity mission, although there are differences in some regions. The high-resolution (3-km) SM retrieval product, generated by combining Copernicus Sentinel-1 data with SMAP observations, performs within expectations. Currently, however, there is limited availability of 3-km CVS data to support extensive validation at this spatial scale. The most recent (version 5) SMAP Level 4 SM data assimilation product providing surface and root-zone SM with complete spatio-temporal coverage at 9-km resolution also meets performance requirements. The SMAP SM validation program will continue throughout the mission life; future plans include expanding it to forested and high-latitude regions
    corecore