166 research outputs found
Quantum-Enhanced Heat Engine Based on Superabsorption
We propose a quantum-enhanced heat engine with entanglement. The key feature
of our scheme is superabsorption, which facilitates enhanced energy absorption
by entangled qubits. Whereas a conventional engine with separable qubits
provides power with a scaling of , our engine uses
superabsorption to provide power with a quantum scaling of .
This quantum heat engine also exhibits a scaling advantage over classical ones
composed of -particle Langevin systems. Our work elucidates the quantum
properties allowing for the enhancement of performance
Measurement optimization of variational quantum simulation by classical shadow and derandomization
Simulating large quantum systems is the ultimate goal of quantum computing.
Variational quantum simulation (VQS) gives us a tool to achieve the goal in
near-term devices by distributing the computation load to both classical and
quantum computers. However, as the size of the quantum system becomes large,
the execution of VQS becomes more and more challenging. One of the most severe
challenges is the drastic increase in the number of measurements; for example,
the number of measurements tends to increase by the fourth power of the number
of qubits in a quantum simulation with a chemical Hamiltonian. This work aims
to dramatically decrease the number of measurements in VQS by recently proposed
shadow-based strategies such as classical shadow and derandomization. Even
though previous literature shows that shadow-based strategies successfully
optimize measurements in the variational quantum optimization (VQO), how to
apply them to VQS was unclear due to the gap between VQO and VQS in measuring
observables. In this paper, we bridge the gap by changing the way of measuring
observables in VQS and propose an algorithm to optimize measurements in VQS by
shadow-based strategies. Our theoretical analysis not only reveals the
advantage of using our algorithm in VQS but theoretically supports using
shadow-based strategies in VQO, whose advantage has only been given
numerically. Additionally, our numerical experiment shows the validity of using
our algorithm with a quantum chemical system
Molecular Mechanism for the Regulation of Rho-Kinase by Dimerization and Its Inhibition by Fasudil
SummaryRho-kinase is a key regulator of cytoskeletal events and a promising drug target in the treatment of vascular diseases and neurological disorders. Unlike other protein kinases, Rho-kinase requires both N- and C-terminal extension segments outside the kinase domain for activity, although the details of this requirement have been elusive. The crystal structure of an active Rho-kinase fragment containing the kinase domain and both the extensions revealed a head-to-head homodimer through the N-terminal extension forming a helix bundle that structurally integrates the C-terminal extension. This structural organization enables binding of the C-terminal hydrophobic motif to the N-terminal lobe, which defines the correct disposition of helix αC that is important for the catalytic activity. The bound inhibitor fasudil significantly alters the conformation and, consequently, the mode of interaction with the catalytic cleft that contains local structural changes. Thus, both kinase and drug conformational pliability and stability confer selectivity
Interaction between the CheY response regulator and the histidine-containing phosphotransfer (HPt) domain of the ArcB sensory kinase in Escherichia coli
AbstractBacteria have devised sophisticated His–Asp phosphorelay signaling systems for eliciting a variety of adaptive responses to their environment. The histidine-containing phosphotransfer (HPt) domain, found in many signal transduction protein, functions as a mediator of the His–Asp phosphorelay. The ArcB anaerobic sensor of E. coli contains such a HPt domain, although its function is not fully understood. In this study, we provide in vivo and in vitro evidence that the HPt domain is capable of interacting with the CheY receiver, which contains a phospho-accepting aspartate residue
Error-mitigated quantum metrology via virtual purification
Quantum metrology with entangled resources aims to achieve sensitivity beyond
the standard quantum limit by harnessing quantum effects even in the presence
of environmental noise. So far, sensitivity has been mainly discussed from the
viewpoint of reducing statistical errors under the assumption of perfect
knowledge of a noise model. However, we cannot always obtain complete
information about a noise model due to coherence time fluctuations, which are
frequently observed in experiments. Such unknown fluctuating noise leads to
systematic errors and nullifies the quantum advantages. Here, we propose an
error-mitigated quantum metrology that can filter out unknown fluctuating noise
with the aid of purification-based quantum error mitigation. We demonstrate
that our protocol mitigates systematic errors and recovers superclassical
scaling in a practical situation with time-inhomogeneous bias-inducing noise.
Our results reveal the usefulness of purification-based error mitigation for
unknown fluctuating noise, thus paving the way not only for practical quantum
metrology but also for quantum computation affected by such noise.Comment: 6+11 pages, 3+4 figure
- …