5 research outputs found

    Conversion of low-rank Kilyos coal to nitrogeneous fertilizers

    Get PDF
    The aim of this work is to convert the low-rank Kilyos coal to a material that could be used as a nitrogenous fertilizer. Incorporation of nitrogen into this Kilyos coal was accomplished by oxidative ammoniation, which was a two-step process involving oxidation with nitric acid followed by a treatment by ammonia. The nitrogen content of the raw coal increased from 0.8% to 8.3-9.3% after ammoniation process. Trace element concentrations in the nitro-coal, HA and OAC samples were within the acceptable ranges to be used as nitrogenous fertilizer. Therefore the oxy-ammoniated products could be considered as high-value fertilizers

    Synthesis and spectroscopic properties of a novel perylenediimide derivative

    Get PDF
    A novel symmetric 3,4,9,10-perylenetetracarboxylic acid derivative (PDI1) dye based on thiophene donor group was synthesized and characterized by FT-IR and 1H NMR. Cyclic Voltammetry analysis is performed to determine the energy levels of the perylene derivative. Optical characteristics were determined by visible absorption and fluorescence emission spectra. Spectral behavior and fluorescence quantum yield of PDI1 have been measured in different solvents. The dye exhibits high fluorescence quantum yield ( Φf: 0.94-0.99). But the quantum yield PDI1 is very low in the n-butanol solution ( Φf: 0.12). The photophysical properties have important implications for use in a variety of electroactive and photovoltaic applications. A photovoltaic device was fabricated with PDI1 as transporting material. The conversion efficiency for DSSC sensitized by PDI1 is 0.0065%. PDI1 exhibits electrochromic behavior by switching between neutral (red) and oxidized (blue) states. Electron transfer capacity of PDI to the TiO2 was investigated by incorporation of dye as sensitizer in dye sensitized solar cell (DSSC). Soluble dye molecules are very important to prepare dye sensitized solar cell. Solubility was increased with thiophene group

    Synthesis and spectroscopic properties of a novel perylenediimide derivative

    Get PDF
    A novel symmetric 3,4,9,10-perylenetetracarboxylic acid derivative (PDI1) dye based on thiophene donor group was synthesized and characterized by FT-IR and 1H NMR. Cyclic Voltammetry analysis is performed to determine the energy levels of the perylene derivative. Optical characteristics were determined by visible absorption and fluorescence emission spectra. Spectral behavior and fluorescence quantum yield of PDI1 have been measured in different solvents. The dye exhibits high fluorescence quantum yield ( Φf: 0.94-0.99). But the quantum yield PDI1 is very low in the n-butanol solution ( Φf: 0.12). The photophysical properties have important implications for use in a variety of electroactive and photovoltaic applications. A photovoltaic device was fabricated with PDI1 as transporting material. The conversion efficiency for DSSC sensitized by PDI1 is 0.0065%. PDI1 exhibits electrochromic behavior by switching between neutral (red) and oxidized (blue) states. Electron transfer capacity of PDI to the TiO2 was investigated by incorporation of dye as sensitizer in dye sensitized solar cell (DSSC). Soluble dye molecules are very important to prepare dye sensitized solar cell. Solubility was increased with thiophene group

    Optical and electrochemical properties of polyether derivatives of perylenediimides adsorbed on nanocrystalline metal oxide films

    Get PDF
    We report optical and electrochemical properties of polyether derivatives of perylenediimides (PDIs) thin films formed in various materials (semiconductor, insulator, amorphous and self-assembly). Perylenediimides adsorbed on nanocrystalline TiO2(NT) nanocrystalline alumina (NA), amorphous silicon (PS) and neat self-assemblied (SA) films were prepared and characterized based on spectroscopic, electrochemical, spectro-electrochemical techniques. The absorption and fluorescence spectra of PDIs in chloroform exhibit vibronic features. The fluorescence quantum yields (Uf) of PDIs with end amino substituents in chloroform solutions are over 0.95, while the quantum yield of triethoxyphenyl substituted PDIUfvalue is 0.024 in solution. Optical spectroscopy proves that PDIs in metal oxide thin films form aggregated type complexes. An electrochromism, a color change from red to blue/violet, is observed on metal oxide films, that indicates existence of mono and dianion forms of PDIs. Reversibility of electrochemical reductions in NT film depends on the scanning rate. However, electrochromism in NA films is stable and reversibility is independent from scanning rate. Stable mono and diaionic species are formed on NA films. SA films show broad absorption peaks during the voltammetric scan. On the other hand, the first reduction onset potentials of PDIs are almost equal to the onset potential of capacitive current of TiO2which lead to low efficiency in dye-sensitized solar cells
    corecore