3 research outputs found

    Facile synthesis of ag nanowire/tio2 and ag nanowire/tio2/go nanocomposites for photocatalytic degradation of rhodamine b

    No full text
    This paper investigates the photocatalytic characteristics of Ag nanowire (AgNW)/TiO2 and AgNW/TiO2/graphene oxide (GO) nanocomposites. Samples were synthesized by the direct coating of TiO2 particles on the surface of silver nanowires. As-prepared AgNW/TiO2 and AgNW/TiO2/GO nanocomposites were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared spectroscopy. Transmission electron microscope (TEM) images confirmed the successful deposition of TiO2 nanoparticles on the surface of AgNWs. The photocatalytic activity of synthesized nanocomposites was evaluated using Rhodamine B (RhB) in an aqueous solution as the model organic dye. Results showed that synthesized AgNW/TiO2/GO nanocomposite has superior photocatalytic activities when it comes to the decomposition of RhB.Electronic Components, Technology and Material

    Degradation of silicone-based sealing materials used in microelectronics

    No full text
    Adhesive bonding is a key joining technology in many industrial applications, including automotive, aerospace industries, biomedical devices, and microelectronic components. Adhesive bonding is gaining more and more attention due to the increasing demand for joining similar or dissimilar components, mostly within the framework of designing lightweight structures. Silicone sealant is widely used in engineering application due to its thermal stability, excellent energy absorption, and good damping characteristics. In those applications, sealant usually exposed to various environment stress, such as, high temperature, mechanical stress, humidity, light radiation, and chemical attack. Long-term stability and durability of sealant is crucial to the performance of the associated application. The main degrading factors for silicone in microelectronic applications are temperature, humidity, alkali, and mechanical loading. The focus in the present paper is to understand different failure mechanisms in silicone sealants and adhesives and to study how different environmental, mechanical, and service-related stresses attribute to the kinetics and extent of degradation in silicone sealants and adhesives. The impact of different failure mechanisms on the lifetime and reliability of microelectronic devices will be methodically investigated.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material

    Synthesis and characterization of Ag-ion-exchanged zeolite/TiO2 nanocomposites for antibacterial applications and photocatalytic degradation of antibiotics

    No full text
    This paper investigates the synthesis, antibacterial, and photocatalytic properties of silver ion-exchanged natural zeolite/TiO2 photocatalyst nanocomposite. Zeolite is known to have a porous surface structure, making it an ideal substrate and framework in different nanocomposites. Moreover, natural zeolite has a superior thermal and chemical stability, with hardly any reactivity with chemicals. Finding an effective and low-cost method to remove both antibiotics and bacteria from water resources has become a vital global issue due to the worldwide excessive use of chemicals and antibiotics. This research aims to propose a facile method to synthesize Ag-ion-exchanged zeolite/TiO2 catalyst for anti-bacterial purposes and photocatalytic removal of atibiotics from wastewaters. TiO2 particles were deposited on the surface of natural zeolite. Ag ion exchanging was performed via a liquid ion-exchange method using 0.1 M AgNO3 solution. X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR) were used to evaluate the structure of synthesized powders. Antibacterial activities of samples were assessed, using Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 by disc diffusion method. It was shown that Ag-containing nanocomposite samples have an improved antibacterial performance in both cases. Results showed that the synthesized catalyst has promising potentials in wastewater treatment.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Electronic Components, Technology and Material
    corecore