12 research outputs found

    Design and Fabrication of Small Vertical-Take-Off-Landing Unmanned Aerial Vehicle

    Get PDF
    Modern UAVs available in the market have well-developed to cater to the countless field of application. UAVs have their own limitations in terms of flight range and manoeuvrability. The traditional fixed-wing UAVs can fly for long distance but require runways or wide-open spaces for take-off and landing. On the other hand, the more trending multirotor UAVs are extremely manoeuvrable but cannot be used for long-distance flights because of their slower speeds and relatively higher consumption of energy. This study proposed the implementation of hybrid VTOL UAV which has the manoeuvring advantage of a multirotor UAV while having the ability to travel fast to reach a further distance. The design methodology and fabrication method are discussed extensively which would be followed by a number of flight tests to prove the concept. The proposed UAV would be equipped with quadcopter motors and a horizontal thrust motor for vertical and horizontal flight modes respectively

    Performance analysis of photovoltaic passive heat storage system with microencapsulated paraffin wax for thermoelectric generation

    Get PDF
    The depletion of non-renewable energy sources and negative effects towards the environment push research towards the widespread adoption of renewable energy sources such as solar energy. The main drawback of solar panels is that temperatures above 27°C will result in an efficiency drop of 0.1-0.5%/°C. In previous studies, usage of photovoltaic thermal (PVT) systems was mainly for the purpose of heating water, warming buildings, and drying crops. This research will focus on the usage of a standalone PVT and thermoelectric generator (TEG) system whereby it uses heat extracted from the PVT system for thermoelectric generation. A passive standalone PVT-TEG system design with microencapsulated paraffin wax as a phase change material (PCM) as a heat storage medium was created. The heat stored in the PCM is used as a heat source for thermoelectric generation. To extract the heat from the PV panel, an aluminum heatsink underneath the PV panel is used as a heat absorber to passively extract heat without external power sources. This setup reduces the surface temperature by 22.7°C. Transient thermal analysis and thermoelectric simulation of the system was conducted through Computational Fluid Dynamics (CFD) using ANSYS 2019 software. The error recorded between the experimental and simulation results was 4.2%. This proposed system panel successfully increased the electrical efficiency of the PV panel by approximately 12.8%, where the overall electrical power produced shows a significant increase from 7.7W to 17.7W

    Proposed Framework of Hybrid Photovoltaic Thermal Systems to Ecotourism in Malaysia

    No full text
    Ecotourism is widely recognized for its positive impacts to the environment. Ecotourism is defined as nature-based tourist experiences, which visitors travel to regions for the purpose of appreciating their natural beauty, relaxation and being harmonious with Mother Nature. Ecotourism probably had its foundations in the ethics of conservation, which can help maintain what’s left of nature and fosters environmental education. Employing the sustainable energy, paying more attention to the natural resources and developing existing natural resources will have a direct impact to healthier sustainable environment for the inhabitant. If not all, most of the ecotourism sites are located in the remote area in which to utilize electrical energy from the normal grid is difficult or very costly. On the irony, utilizing the conventional non-renewable energy have negative effect and ruins the ecotourism sites. Therefore, utilizing Hybrid Photovoltaic Thermal (PVT) systems is a fit alternative energy source to serve the limited energy demands of ecotourists sites. The amount of the energy production depends on the visitors’ capacity of the site. Since the rural area enjoys the cheap and large field, it is easier to plan and assemble the PVT systems to suffice the needed energy. In this research the sustainability of local environment along with the sustainable usage of energy were considered. This paper presents the sustainable energy usage of tourism in Malaysia and aims to address the impact of sustainable and non-sustainable on the rural area of ecotourism. This paper also addresses some of the emission, carbon reduction and climate change issues that the world is expected to meet soon

    Proposed Framework of Hybrid Photovoltaic Thermal Systems to Ecotourism in Malaysia

    No full text
    Ecotourism is widely recognized for its positive impacts to the environment. Ecotourism is defined as nature-based tourist experiences, which visitors travel to regions for the purpose of appreciating their natural beauty, relaxation and being harmonious with Mother Nature. Ecotourism probably had its foundations in the ethics of conservation, which can help maintain what’s left of nature and fosters environmental education. Employing the sustainable energy, paying more attention to the natural resources and developing existing natural resources will have a direct impact to healthier sustainable environment for the inhabitant. If not all, most of the ecotourism sites are located in the remote area in which to utilize electrical energy from the normal grid is difficult or very costly. On the irony, utilizing the conventional non-renewable energy have negative effect and ruins the ecotourism sites. Therefore, utilizing Hybrid Photovoltaic Thermal (PVT) systems is a fit alternative energy source to serve the limited energy demands of ecotourists sites. The amount of the energy production depends on the visitors’ capacity of the site. Since the rural area enjoys the cheap and large field, it is easier to plan and assemble the PVT systems to suffice the needed energy. In this research the sustainability of local environment along with the sustainable usage of energy were considered. This paper presents the sustainable energy usage of tourism in Malaysia and aims to address the impact of sustainable and non-sustainable on the rural area of ecotourism. This paper also addresses some of the emission, carbon reduction and climate change issues that the world is expected to meet soon

    Characteristics Study of Photovoltaic Thermal System with Emphasis on Energy Efficiency

    No full text
    Solar energy is typically collected through photovoltaic (PV) to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT) setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project

    Characteristics Study of Photovoltaic Thermal System with Emphasis on Energy Efficiency

    No full text
    Solar energy is typically collected through photovoltaic (PV) to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT) setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project

    Heat Response Model for Phase Layered Topology in a Photovoltaic Thermal System

    No full text
    The electrical and thermal energy generated by a Photo-voltaic (PV) module is based on the amount of the solar radiation directed on the PV module. In this study, a Photo-voltaic Thermal (PVT) system is constructed to maximize the electrical energy generation through the fast removal of heat through a new phase layered topology. The combinations of aluminum plate and heatsinks are used to transfer heat generated by sunlight radiation on PV modules to heat transfer thermal container. The aluminum plate is attached beneath the PV module and heatsinks welded beneath the alumni plate making it as a phase layered heat removal. The heat transfer on each layer of the photovoltaic thermal system is investigated with the phase changing topology and also investigated for its performance with a heat removal agent. In both cases, with and without water as coolant in the thermal container, the experimental outcome is analysed for performance analysis. It is found the PV temperature reduced by about 10 degrees which is cirtical for the PV performance reducing the wasted thermal energy and thereby increases the electrical energy conversion

    Design and Fabrication of Small Vertical-Take-Off-Landing Unmanned Aerial Vehicle

    No full text
    Modern UAVs available in the market have well-developed to cater to the countless field of application. UAVs have their own limitations in terms of flight range and manoeuvrability. The traditional fixed-wing UAVs can fly for long distance but require runways or wide-open spaces for take-off and landing. On the other hand, the more trending multirotor UAVs are extremely manoeuvrable but cannot be used for long-distance flights because of their slower speeds and relatively higher consumption of energy. This study proposed the implementation of hybrid VTOL UAV which has the manoeuvring advantage of a multirotor UAV while having the ability to travel fast to reach a further distance. The design methodology and fabrication method are discussed extensively which would be followed by a number of flight tests to prove the concept. The proposed UAV would be equipped with quadcopter motors and a horizontal thrust motor for vertical and horizontal flight modes respectively

    Design and Fabrication of Small Vertical-Take-Off-Landing Unmanned Aerial Vehicle

    Get PDF
    Modern UAVs available in the market have well-developed to cater to the countless field of application. UAVs have their own limitations in terms of flight range and manoeuvrability. The traditional fixed-wing UAVs can fly for long distance but require runways or wide-open spaces for take-off and landing. On the other hand, the more trending multirotor UAVs are extremely manoeuvrable but cannot be used for long-distance flights because of their slower speeds and relatively higher consumption of energy. This study proposed the implementation of hybrid VTOL UAV which has the manoeuvring advantage of a multirotor UAV while having the ability to travel fast to reach a further distance. The design methodology and fabrication method are discussed extensively which would be followed by a number of flight tests to prove the concept. The proposed UAV would be equipped with quadcopter motors and a horizontal thrust motor for vertical and horizontal flight modes respectively.</p

    Cost effective thermoelectric composites from recycled carbon fibre: From waste to energy

    Get PDF
    Within the framework of recycling and reusing carbon fibre, this study focused on the fabrication of a thermoelectric composite encompassing recycled carbon fibre and two thermoelectric fillers (i) bismuth telluride and (ii) bismuth sulphide. This study investigated the effect of the concentration of bismuth telluride and bismuth sulphide fillers respectively on the thermoelectric, morphology, structural and thermal stability of the recycled carbon fibre thermoelectric composites. The optimum thermoelectric filler concentration is 45 wt% for both fillers, which resulted in a power factor of 0.194 ± 9.70 × 10−3 μWK−2m−1 and 0.0941 ± 4.71 × 10−3 μWK−2m−1 for recycled carbon fibre-bismuth telluride and recycled carbon fibre-bismuth sulphide composites respectively. This study exhibited the energy harvesting capabilities of recycled carbon fibre composites from low grade waste heat when coated with thermoelectric materials
    corecore