40 research outputs found

    Longitudinal clustering analysis and prediction of Parkinson\u27s disease progression using radiomics and hybrid machine learning

    Get PDF
    Background: We employed machine learning approaches to (I) determine distinct progression trajectories in Parkinson\u27s disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised prediction task), from early (years 0 and 1) data, making use of clinical and imaging features. Methods: We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson\u27s Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects (original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms (KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification algorithms. Results: We identified 3 distinct progression trajectories. Hotelling\u27s t squared test (HTST) showed that the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively. Conclusions: This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease trajectories. We conclude that combining medical information with SPECT-based radiomics features, and optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective prediction of disease trajectories from early year data

    Robust identification of Parkinson\u27s disease subtypes using radiomics and hybrid machine learning

    Get PDF
    OBJECTIVES: It is important to subdivide Parkinson\u27s disease (PD) into subtypes, enabling potentially earlier disease recognition and tailored treatment strategies. We aimed to identify reproducible PD subtypes robust to variations in the number of patients and features. METHODS: We applied multiple feature-reduction and cluster-analysis methods to cross-sectional and timeless data, extracted from longitudinal datasets (years 0, 1, 2 & 4; Parkinson\u27s Progressive Marker Initiative; 885 PD/163 healthy-control visits; 35 datasets with combinations of non-imaging, conventional-imaging, and radiomics features from DAT-SPECT images). Hybrid machine-learning systems were constructed invoking 16 feature-reduction algorithms, 8 clustering algorithms, and 16 classifiers (C-index clustering evaluation used on each trajectory). We subsequently performed: i) identification of optimal subtypes, ii) multiple independent tests to assess reproducibility, iii) further confirmation by a statistical approach, iv) test of reproducibility to the size of the samples. RESULTS: When using no radiomics features, the clusters were not robust to variations in features, whereas, utilizing radiomics information enabled consistent generation of clusters through ensemble analysis of trajectories. We arrived at 3 distinct subtypes, confirmed using the training and testing process of k-means, as well as Hotelling\u27s T2 test. The 3 identified PD subtypes were 1) mild; 2) intermediate; and 3) severe, especially in terms of dopaminergic deficit (imaging), with some escalating motor and non-motor manifestations. CONCLUSION: Appropriate hybrid systems and independent statistical tests enable robust identification of 3 distinct PD subtypes. This was assisted by utilizing radiomics features from SPECT images (segmented using MRI). The PD subtypes provided were robust to the number of the subjects, and features

    Synergistic impact of motion and acquisition/reconstruction parameters on F-18-FDG PET radiomic features in non-small cell lung cancer:Phantom and clinical studies

    Get PDF
    Objectives: This study is aimed at examining the synergistic impact of motion and acquisition/reconstruction parameters on 18 F-FDG PET image radiomic features in non-small cell lung cancer (NSCLC) patients, and investigating the robustness of features performance in differentiating NSCLC histopathology subtypes. Methods: An in-house developed thoracic phantom incorporating lesions with different sizes was used with different reconstruction settings, including various reconstruction algorithms, number of subsets and iterations, full-width at half-maximum of post-reconstruction smoothing filter and acquisition parameters, including injected activity and test-retest with and without motion simulation. To simulate motion, a special motor was manufactured to simulate respiratory motion based on a normal patient in two directions. The lesions were delineated semi-automatically to extract 174 radiomic features. All radiomic features were categorized according to the coefficient of variation (COV) to select robust features. A cohort consisting of 40 NSCLC patients with adenocarcinoma (n = 20) and squamous cell carcinoma (n = 20) was retrospectively analyzed. Statistical analysis was performed to discriminate robust features in differentiating histopathology subtypes of NSCLC lesions. Results: Overall, 29% of radiomic features showed a COV ≤5% against motion. Forty-five percent and 76% of the features showed a COV ≤ 5% against the test-retest with and without motion in large lesions, respectively. Thirty-three percent and 45% of the features showed a COV ≤ 5% against different reconstruction parameters with and without motion, respectively. For NSCLC histopathological subtype differentiation, statistical analysis showed that 31 features were significant (p-value &lt; 0.05). Two out of the 31 significant features, namely, the joint entropy of GLCM (AUC = 0.71, COV = 0.019) and median absolute deviation of intensity histogram (AUC = 0.7, COV = 0.046), were robust against the motion (same reconstruction setting). Conclusions: Motion, acquisition, and reconstruction parameters significantly impact radiomic features, just as their synergies. Radiomic features with high predictive performance (statistically significant) in differentiating histopathological subtype of NSCLC may be eliminated due to non-reproducibility.</p

    Left Ventricular Myocardial Dysfunction Evaluation in Thalassemia Patients Using Echocardiographic Radiomic Features and Machine Learning Algorithms.

    Get PDF
    Heart failure caused by iron deposits in the myocardium is the primary cause of mortality in beta-thalassemia major patients. Cardiac magnetic resonance imaging (CMRI) T2* is the primary screening technique used to detect myocardial iron overload, but inherently bears some limitations. In this study, we aimed to differentiate beta-thalassemia major patients with myocardial iron overload from those without myocardial iron overload (detected by T2*CMRI) based on radiomic features extracted from echocardiography images and machine learning (ML) in patients with normal left ventricular ejection fraction (LVEF > 55%) in echocardiography. Out of 91 cases, 44 patients with thalassemia major with normal LVEF (> 55%) and T2* ≤ 20 ms and 47 people with LVEF > 55% and T2* > 20 ms as the control group were included in the study. Radiomic features were extracted for each end-systolic (ES) and end-diastolic (ED) image. Then, three feature selection (FS) methods and six different classifiers were used. The models were evaluated using various metrics, including the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Maximum relevance-minimum redundancy-eXtreme gradient boosting (MRMR-XGB) (AUC = 0.73, ACC = 0.73, SPE = 0.73, SEN = 0.73), ANOVA-MLP (AUC = 0.69, ACC = 0.69, SPE = 0.56, SEN = 0.83), and recursive feature elimination-K-nearest neighbors (RFE-KNN) (AUC = 0.65, ACC = 0.65, SPE = 0.64, SEN = 0.65) were the best models in ED, ES, and ED&ES datasets. Using radiomic features extracted from echocardiographic images and ML, it is feasible to predict cardiac problems caused by iron overload

    Time-to-event overall survival prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics

    Get PDF
    Purpose: Glioblastoma Multiforme (GBM) represents the predominant aggressive primary tumor of the brain with short overall survival (OS) time. We aim to assess the potential of radiomic features in predicting the time-to-event OS of patients with GBM using machine learning (ML) algorithms. Materials and methods: One hundred nineteen patients with GBM, who had T1-weighted contrast-enhanced and T2-FLAIR MRI sequences, along with clinical data and survival time, were enrolled. Image preprocessing methods included 64 bin discretization, Laplacian of Gaussian (LOG) filters with three Sigma values and eight variations of Wavelet Transform. Images were then segmented, followed by the extraction of 1212 radiomic features. Seven feature selection (FS) methods and six time-to-event ML algorithms were utilized. The combination of preprocessing, FS, and ML algorithms (12 × 7 × 6 = 504 models) was evaluated by multivariate analysis. Results: Our multivariate analysis showed that the best prognostic FS/ML combinations are the Mutual Information (MI)/Cox Boost, MI/Generalized Linear Model Boosting (GLMB) and MI/Generalized Linear Model Network (GLMN), all of which were done via the LOG (Sigma = 1 mm) preprocessing method (C-index = 0.77). The LOG filter with Sigma = 1 mm preprocessing method, MI, GLMB and GLMN achieved significantly higher C-indices than other preprocessing, FS, and ML methods (all p values &lt; 0.05, mean C-indices of 0.65, 0.70, and 0.64, respectively). Conclusion: ML algorithms are capable of predicting the time-to-event OS of patients using MRI-based radiomic and clinical features. MRI-based radiomics analysis in combination with clinical variables might appear promising in assisting clinicians in the survival prediction of patients with GBM. Further research is needed to establish the applicability of radiomics in the management of GBM in the clinic.</p

    Impact of feature harmonization on radiogenomics analysis:Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images

    Get PDF
    Objective: To investigate the impact of harmonization on the performance of CT, PET, and fused PET/CT radiomic features toward the prediction of mutations status, for epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS) genes in non-small cell lung cancer (NSCLC) patients. Methods: Radiomic features were extracted from tumors delineated on CT, PET, and wavelet fused PET/CT images obtained from 136 histologically proven NSCLC patients. Univariate and multivariate predictive models were developed using radiomic features before and after ComBat harmonization to predict EGFR and KRAS mutation statuses. Multivariate models were built using minimum redundancy maximum relevance feature selection and random forest classifier. We utilized 70/30% splitting patient datasets for training/testing, respectively, and repeated the procedure 10 times. The area under the receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity were used to assess model performance. The performance of the models (univariate and multivariate), before and after ComBat harmonization was compared using statistical analyses. Results: While the performance of most features in univariate modeling was significantly improved for EGFR prediction, most features did not show any significant difference in performance after harmonization in KRAS prediction. Average AUCs of all multivariate predictive models for both EGFR and KRAS were significantly improved (q-value &lt; 0.05) following ComBat harmonization. The mean ranges of AUCs increased following harmonization from 0.87-0.90 to 0.92-0.94 for EGFR, and from 0.85-0.90 to 0.91-0.94 for KRAS. The highest performance was achieved by harmonized F_R0.66_W0.75 model with AUC of 0.94, and 0.93 for EGFR and KRAS, respectively. Conclusion: Our results demonstrated that regarding univariate modelling, while ComBat harmonization had generally a better impact on features for EGFR compared to KRAS status prediction, its effect is feature-dependent. Hence, no systematic effect was observed. Regarding the multivariate models, ComBat harmonization significantly improved the performance of all radiomics models toward more successful prediction of EGFR and KRAS mutation statuses in lung cancer patients. Thus, by eliminating the batch effect in multi-centric radiomic feature sets, harmonization is a promising tool for developing robust and reproducible radiomics using vast and variant datasets.</p

    Differential privacy preserved federated transfer learning for multi-institutional 68Ga-PET image artefact detection and disentanglement.

    Get PDF
    PURPOSE Image artefacts continue to pose challenges in clinical molecular imaging, resulting in misdiagnoses, additional radiation doses to patients and financial costs. Mismatch and halo artefacts occur frequently in gallium-68 (68Ga)-labelled compounds whole-body PET/CT imaging. Correcting for these artefacts is not straightforward and requires algorithmic developments, given that conventional techniques have failed to address them adequately. In the current study, we employed differential privacy-preserving federated transfer learning (FTL) to manage clinical data sharing and tackle privacy issues for building centre-specific models that detect and correct artefacts present in PET images. METHODS Altogether, 1413 patients with 68Ga prostate-specific membrane antigen (PSMA)/DOTA-TATE (TOC) PET/CT scans from 3 countries, including 8 different centres, were enrolled in this study. CT-based attenuation and scatter correction (CT-ASC) was used in all centres for quantitative PET reconstruction. Prior to model training, an experienced nuclear medicine physician reviewed all images to ensure the use of high-quality, artefact-free PET images (421 patients' images). A deep neural network (modified U2Net) was trained on 80% of the artefact-free PET images to utilize centre-based (CeBa), centralized (CeZe) and the proposed differential privacy FTL frameworks. Quantitative analysis was performed in 20% of the clean data (with no artefacts) in each centre. A panel of two nuclear medicine physicians conducted qualitative assessment of image quality, diagnostic confidence and image artefacts in 128 patients with artefacts (256 images for CT-ASC and FTL-ASC). RESULTS The three approaches investigated in this study for 68Ga-PET imaging (CeBa, CeZe and FTL) resulted in a mean absolute error (MAE) of 0.42 ± 0.21 (CI 95%: 0.38 to 0.47), 0.32 ± 0.23 (CI 95%: 0.27 to 0.37) and 0.28 ± 0.15 (CI 95%: 0.25 to 0.31), respectively. Statistical analysis using the Wilcoxon test revealed significant differences between the three approaches, with FTL outperforming CeBa and CeZe (p-value < 0.05) in the clean test set. The qualitative assessment demonstrated that FTL-ASC significantly improved image quality and diagnostic confidence and decreased image artefacts, compared to CT-ASC in 68Ga-PET imaging. In addition, mismatch and halo artefacts were successfully detected and disentangled in the chest, abdomen and pelvic regions in 68Ga-PET imaging. CONCLUSION The proposed approach benefits from using large datasets from multiple centres while preserving patient privacy. Qualitative assessment by nuclear medicine physicians showed that the proposed model correctly addressed two main challenging artefacts in 68Ga-PET imaging. This technique could be integrated in the clinic for 68Ga-PET imaging artefact detection and disentanglement using multicentric heterogeneous datasets

    Development and validation of survival prognostic models for head and neck cancer patients using machine learning and dosiomics and CT radiomics features:a multicentric study

    Get PDF
    Background: This study aimed to investigate the value of clinical, radiomic features extracted from gross tumor volumes (GTVs) delineated on CT images, dose distributions (Dosiomics), and fusion of CT and dose distributions to predict outcomes in head and neck cancer (HNC) patients. Methods: A cohort of 240 HNC patients from five different centers was obtained from The Cancer Imaging Archive. Seven strategies, including four non-fusion (Clinical, CT, Dose, DualCT-Dose), and three fusion algorithms (latent low-rank representation referred (LLRR),Wavelet, weighted least square (WLS)) were applied. The fusion algorithms were used to fuse the pre-treatment CT images and 3-dimensional dose maps. Overall, 215 radiomics and Dosiomics features were extracted from the GTVs, alongside with seven clinical features incorporated. Five feature selection (FS) methods in combination with six machine learning (ML) models were implemented. The performance of the models was quantified using the concordance index (CI) in one-center-leave-out 5-fold cross-validation for overall survival (OS) prediction considering the time-to-event. Results: The mean CI and Kaplan-Meier curves were used for further comparisons. The CoxBoost ML model using the Minimal Depth (MD) FS method and the glmnet model using the Variable hunting (VH) FS method showed the best performance with CI = 0.73 ± 0.15 for features extracted from LLRR fused images. In addition, both glmnet-Cindex and Coxph-Cindex classifiers achieved a CI of 0.72 ± 0.14 by employing the dose images (+ incorporated clinical features) only. Conclusion: Our results demonstrated that clinical features, Dosiomics and fusion of dose and CT images by specific ML-FS models could predict the overall survival of HNC patients with acceptable accuracy. Besides, the performance of ML methods among the three different strategies was almost comparable.</p
    corecore