5 research outputs found

    Effect of Different Packing Types on Storage and Quality of Saidy Dates

    Get PDF
    This study was conducted during two successive seasons 2020/2021 and 2021/2022 to study the effect of some packing types on the storability and quality of saidy dates (Phoenix dactylifera L.) fruits during the storage period. The post-harvest treatments were packed with perforated or non-perforated polyethylene layers and aluminum foil. The fruits were stored at cold condition 5±1°C with 85-90% RH. Samples of each treatment were randomly taken every two months for 8 months. The results showed that fruit weight loss %, fruit damage %, total soluble solids % and sugar contents were significantly increased with prolonging the storage period. On other hand, the advanced storage period induced a gradual decrease of fruit weight, flesh% and fruit dimensions. All packing with non-perforated either polyethylene or aluminum foil caused a decrease in fruit weight loss and fruit damage percentage as well as fruit weight, flesh% and fruit dimensions compared to use other packing types .Using non-perforated polyethylene result in the least fruit weight loss and fruit damage percentage compared to use other packing types. Using non-perforated polyethylene packing improved the fruit quality during the storage period compared to use perforated polyethylene or either perforated or non-perforated aluminum foil. It could be concluded that using Packing with non-perforated polyethylene maintained fruit freshness without negative effects of fruit quality parameters and seems to be the proper and an ideal packing types to prolong cold storage of saidy dates without great reduction in fruit quality

    Effective synergy of ionic capacity and C3-symmetry porosity in porous ionic polymers based imidazolium/pyridinium-benzene and/or triazine molecular hybrids: A comprehensive review

    No full text
    The broad spectrum of applications and significance of C3-symmetric porous ionic polymers (C3-PiPs) have been demonstrated based on available literature. A comprehensive and thorough review of the numerous applications of C3-PiPs has been implemented, highlighting recent significant accomplishments across every area. Their structural arrangement, which is defined by threefold symmetry, confers distinct features and functions. The aforementioned materials unite the benefits of both porous frameworks and ionic interactions, resulting in higher adsorption, variable charge distribution, and significant stability. This overview is anticipated to enlightening the significant knowledge of all C3-PiPs-related research fields, focusing on the efficient four synthetic approaches for expanding the synthesis of C3-PiPs: post-synthesis polymer modification to enhance porosity and functionality, one-component self-condensation, multi-component co-polymerization and one-pot quaternization. Along with that, the challenges involved with the industrial application of ionic liquids have been noted, demanding further exploration

    Multicentre randomised double-blinded placebo-controlled trial of favipiravir in adults with mild COVID-19

    No full text
    Introduction A novel coronavirus, designated SARS-CoV-2, caused an international outbreak of a respiratory illness, termed COVID-19 in December 2019. There is a lack of specific therapeutic agents based on evidence for this novel coronavirus infection; however, several medications have been evaluated as a potential therapy. Therapy is required to treat symptomatic patients and decrease the virus carriage duration to limit the communitytransmission.Methods and analysis We hypothesise that patients with mild COVID-19 treated with favipiravir will have a shorter duration of time to virus clearance than the control group. The primary outcome is to evaluate the effect of favipiravir on the timing of the PCR test conversion from positive to negative within 15 days after starting the medicine.Adults (>18 years, men or nonpregnant women, diagnosed with mild COVID-19 within 5 days of disease onset) are being recruited by physicians participating from the Ministry of National Guard Health Affairs and the Ministry of Health ethics committee approved primary healthcare centres. This double-blind, randomised trial comprises three significant parts: screening, treatment and a follow-up period. The treating physician and patients are blinded. Eligible participants are randomised in a 1:1 ratio to either the therapy group (favipiravir) or a control group (placebo) with 1800 mg by mouth two times per day for the first day, followed by 800 mg two times per day for 4–7 days. Serial nasopharyngeal/oropharyngeal swab samples are obtained on day 1 (5 days before therapy). On day5±1 day, 10±1 day, 15±2 days, extra nasopharyngeal/oropharyngeal PCR COVID-19 samples are requested.The primary analysis population for evaluating both the efficacy and safety outcomes will be a modified intention to treat population. Anticipating a 10% dropout rate, we expect to recruit 288 subjects per arm. The results assume that the hazard ratio is constant throughout the study and that the Cox proportional hazard regression is used to analyse the data.Ethics and dissemination The study was approved by the King Abdullah International Medical Research Centre Institutional Review Board (28 April 2020) and the Ministry of Health Institutional Review Board (1 July 2020). Protocol details and any amendments will be reported to https://clinicaltrials.gov/ct2/show/NCT04464408. The results will be published in peer-reviewed journals.Trial registration number National Clinical Trial Registry (NCT04464408)

    Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route

    No full text
    The present work describes the effect of Ce3+ ion doping on the structural, morphological, and magnetic properties of spinel manganese ferrite (MnFe2O4) nanocrystallites (NCs) using various instrument techniques. Rare earth element (REE) Cerium (Ce3+) doped MnFe2O4 NCs were prepared by a simple microwave combustion technique. In the present scenario, ferrites are widely used for photocatalytic dye degradation and antibacterial applications. Aiming to achieve this, we prepared Ce3+ doped MnFe2O4 NCs by microwave combustion method and urea as burning agent and the obtained powder samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscope (HR-SEM), high resolution transmission electron microscope (HR-TEM) and vibration sample magnetometer (VSM) techniques. The pure spinel phase formation was confirmed by XRD analysis. FTIR spectra show two prominent absorption bands under 1000 cm−1, which confirms the formation of the spinel structure. HR-SEM and HR-TEM pictures demonstrated a sphere-shaped morphology and also expose the combination and agglomeration of grains, which are mostly due to the magnetic characteristics of the samples. The magnetic properties of the synthesized MnCexFe2−xO4 (x = 0.0, 0.1, 0.3, and 0.5) NCs were studied by VSM analysis at room temperature (RT) shows ferromagnetic behavior. The photodegradation results showed that MnFe2O4 and Ce doped MnFe2O4 NCs have a higher potential to degrade methylene blue (MB) and the sample MnCe0.3Fe1.7O4 NCs showed superb photocatalytic performance (91.53%) compared to other samples. The antibacterial activities of Gram-positive S. aureus, B. subtilis and Gram-negative K. pneumonia and E. coli were investigated using pure and Ce3+ substituted MnFe2O4 NCs and a higher activity for MnCe0.3Fe1.7O4 NCs than other samples was observed, which indicated that they can be used in biomedical applications

    Influence of Ce<sup>3+</sup> on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe<sub>2</sub>O<sub>4</sub> Nanocrystallites Prepared by the Combustion Route

    No full text
    The present work describes the effect of Ce3+ ion doping on the structural, morphological, and magnetic properties of spinel manganese ferrite (MnFe2O4) nanocrystallites (NCs) using various instrument techniques. Rare earth element (REE) Cerium (Ce3+) doped MnFe2O4 NCs were prepared by a simple microwave combustion technique. In the present scenario, ferrites are widely used for photocatalytic dye degradation and antibacterial applications. Aiming to achieve this, we prepared Ce3+ doped MnFe2O4 NCs by microwave combustion method and urea as burning agent and the obtained powder samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscope (HR-SEM), high resolution transmission electron microscope (HR-TEM) and vibration sample magnetometer (VSM) techniques. The pure spinel phase formation was confirmed by XRD analysis. FTIR spectra show two prominent absorption bands under 1000 cm−1, which confirms the formation of the spinel structure. HR-SEM and HR-TEM pictures demonstrated a sphere-shaped morphology and also expose the combination and agglomeration of grains, which are mostly due to the magnetic characteristics of the samples. The magnetic properties of the synthesized MnCexFe2−xO4 (x = 0.0, 0.1, 0.3, and 0.5) NCs were studied by VSM analysis at room temperature (RT) shows ferromagnetic behavior. The photodegradation results showed that MnFe2O4 and Ce doped MnFe2O4 NCs have a higher potential to degrade methylene blue (MB) and the sample MnCe0.3Fe1.7O4 NCs showed superb photocatalytic performance (91.53%) compared to other samples. The antibacterial activities of Gram-positive S. aureus, B. subtilis and Gram-negative K. pneumonia and E. coli were investigated using pure and Ce3+ substituted MnFe2O4 NCs and a higher activity for MnCe0.3Fe1.7O4 NCs than other samples was observed, which indicated that they can be used in biomedical applications
    corecore