25 research outputs found

    Design and Experimental Validation of a Rapidly Deployable Folding Floating Bridge Based on Rigid-Flexible Combination

    No full text
    As a temporary means of water transportation, floating bridges play an important role in the military and other fields. However, traditional floating bridges have limitations such as large size, heavy weight, and slow construction time. In this paper, we propose a rigid-flexible composite folding floating bridge. The main structure of the floating bridge consists of three layers: the bridge deck, airbag, and water bag. The floating bridge units are connected by flexible connectors to allow for pre-connection and folding of the bridge, reducing storage and transportation space, and improving construction efficiency. The proposed floating bridge also has a complete engineering application design and has been checked for safety and reliability (including the strength, buoyancy, and bearing capacity of the connections). We used AQWA software to simulate and analyze the anchorage scheme of the floating bridge and its response to wave loads and conducted a ballast test on a floating bridge model to verify its feasibility as a main bearing body. The results show that the floating bridge we designed has the advantages of being lightweight, having fewer consumables, having a small storage and transportation space, and being able to be constructed quickly

    Optimal Planning of Active Distribution Network Based on Soft Open Point and Shunt Capacitors

    No full text
    As the penetration of distributed wind power in the distribution network continues to increase, the uncertainty of its output has a serious impact on the stable operation of the distribution network. It is difficult to meet the voltage regulation requirements when the wind power fluctuates frequently only by relying on shunt capacitors. Therefore, a coordinated optimization planning method based on soft open point (SOP) and shunt capacitors is proposed. Firstly, the bidirectional generative adversarial network (BIGAN) is used to characterize the uncertainty of wind power output and generate typical scenarios of wind power output. Secondly, a multi-objective optimization planning model of SOP and shunt capacitors is proposed based on the scene analysis method; Then, a solution strategy based on the improved elitist non-dominated sorting genetic algorithm (NSGA-II) is proposed. Finally, the proposed planning model and solution are verified and analyzed in the improved IEEE 33-bus system

    Mechanisms by which spinal cord stimulation intervenes in atrial fibrillation: The involvement of the endothelin-1 and nerve growth factor/p75NTR pathways

    No full text
    Can the spinal cord stimulation (SCS) regulate the autonomic nerves through the endothelin-1 (ET-1) and nerve growth factor (NGF)/p75NTR pathways and thus inhibit the occurrence of atrial fibrillation (AF)? In our research, 16 beagles were randomly divided into a rapid atrial pacing (RAP) group (n = 8) and a RAP + SCS group (n = 8), and the effective refractory period (ERP), ERP dispersion, AF induction rate, and AF vulnerability window (WOV) at baseline, 6 h of RAP, 6 h of RAP + SCS were measured. The atrial tissue was then taken for immunohistochemical analysis to determine the localization of ET-1, NGF, p75NTR, NF-kB p65, and other genes. Our results showed that SCS attenuated the shortening of ERP in all parts caused by RAP, and after 6 h of SCS, the probability of AF in dogs was reduced compared with that in the RAP group. Moreover, the expression of ET-1, NGF, and p75NTR in the atrial tissues of dogs in the RAP + SCS group was significantly increased, but the expression of NF-kB p65 was reduced. In conclusion, SCS promotes the positive remodeling of cardiac autonomic nerves by weakening NFκB p65-dependent pathways to interfere with the ET-1 and NGF/p75NTR pathways to resist the original negative remodeling and inhibit the occurrence of AF

    Fluctuations in Graphitization of Coal Seam-Derived Natural Graphite upon Approaching the Qitianling Granite Intrusion, Hunan, China

    No full text
    The Lutang graphite deposit in Chenzhou, Hunan province, China, is a well-known coal seam-derived graphite (graphite formed from coal during its natural evolution) deposit with proven reserves of 9.5 million tons and prospective reserves of around 20 million tons (2015 data). The graphite occurs at an andalusite bearing sericite quartz chlorite metamorphic mudstone around a c. 530 km2 Qitianling granite intrusion. A set of coal seam-derived graphite samples from the Lutang graphite deposit in Hunan was examined by geochemical, crystallographic, and spectroscopic techniques to assess changes in the degree of graphitization approaching the intrusion. The carbon content, degree of graphitization, and Raman spectral parameters of series coal seam-derived natural graphite samples show a fluctuating increase with increasing proximity to the granite intrusion. The profile of geological structural features has a close spatial correlation with the variations in the degree of graphitization of series coal seam-derived natural graphite, and a strain-enhanced graphitization model is proposed. Moreover, the geographical distribution and the degree of graphitization are positively related to changes in the iron content of chlorite, suggesting a graphitization process promoted by mineral catalysis during metamorphism. A close spatial relationship exists between graphite mineral and chlorite occurrences when approaching the intrusive mass. The results of this research are important for understanding the role of tectonic stress and mineral catalysis on the genesis of coal-derived graphite

    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    No full text
    Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP) at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+)) and MDA-MB-231 (human breast cancer ER(−)) cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7), p53, nuclear factor-κB p65 (NF-κB p65), reactive oxygen species (ROS) levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs). These results suggest that EECP is a potential alternative agent on breast cancer treatment

    Rub‐Resistant Antibacterial Surface Conversion Layer on Stainless Steel

    No full text
    Abstract Stainless steels are widely used in hospitals and public transportation vehicles as one of the most common touch surfaces. Retrofitting stainless steel surfaces with an antimicrobial layer can bring potential public health benefits by reducing the ability of inanimate objects, or fomites, to transmit infections. Here, a facile surface conversion reaction between stainless steel and a solution of KMnO4 and CuSO4 is reported, which leads to a conformal and robust oxyhydroxide layer. Microscopy observations show that the layer is amorphous, continuous, and pinhole‐free with a thickness of only 10–15 nm. The coating adheres strongly to stainless steel and can resist rubbing in simulated friction tests, which is attributed to its intermixing with the substrate without forming a sharp interface. Cu ions incorporated into the surface layer can be released into water droplets deposited on the surface and induce antimicrobial activities against bacteria (Pseudomonas aeruginosa PA14) after 30 min of contact

    Early endovascular intervention for unfavorable remodeling of the thoracic aorta after open surgery for acute DeBakey type I aortic dissection: study protocol for a multicenter, randomized, controlled trial

    No full text
    Abstract Background Total arch replacement with frozen elephant trunk has been developed with promising results for DeBakey type I aortic dissection. However, several problems, such as continuous perfusion of distal false lumen and unfavorable remodeling of distal aorta postoperatively, can seriously affect the long-term outcome. This trial aims to assess the effects of early minimally invasive endovascular repair on distal aortic remodeling and long-term clinical outcomes in patients with dominant false lumen and residual tears in the descending thoracic aorta after total arch replacement and frozen elephant trunk procedure. Methods This is a protocol for a two-arm, parallel, multicenter, randomized controlled trial. A total of 154 eligible patients will be recruited from four hospitals in China and randomized on a 1:1 basis either to the experiment group (endovascular repair in addition to routine antihypertensive therapy) or the control group (routine antihypertensive therapy without early surgical treatment). The primary outcome will be the five-year all-cause mortality. The secondary outcomes will include re-intervention, ischemic symptoms, organ dysfunction, and stent-related adverse events. Discussion If early minimally invasive endovascular repair could safely and effectively promote distal aortic remodeling and bring favorable long-term outcomes for patients with dominant false lumen and residual tears in the descending thoracic aorta after total arch replacement and frozen elephant trunk technique, it would improve the treatment strategy for DeBakey type I aortic dissection. Trial registration Chinese Clinical Trial Registry, CHiCTR2000030050. Registered on 11 March 2020

    N-3 PUFA supplementation benefits microglial responses to myelin pathology

    No full text
    Microglia represent rational but challenging targets for improving white matter integrity because of their dualistic protective and toxic roles. The present study examines the effect of Omega-3 polyunsaturated fatty acids (n-3 PUFAs) on microglial responses to myelin pathology in primary cultures and in the cuprizone mouse model of multiple sclerosis (MS), a devastating demyelination disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the two main forms of n-3 PUFAs in the brain, inhibited the release of nitric oxide and tumor necrosis factor- αfrom primary microglia upon IFN-γ and myelin stimulation. DHA and EPA also enhanced myelin phagocytosis in vitro. Therefore, n-3 PUFAs can inhibit inflammation while at the same time enhancing beneficial immune responses such as microglial phagocytosis. In vivo studies demonstrated that n-3 PUFA supplementation reduced cuprizone-induced demyelination and improved motor and cognitive function. The positive effects of n-3 PUFAs were accompanied by a shift in microglial polarization toward the beneficial M2 phenotype both in vitro and in vivo. These results suggest that n-3 PUFAs may be clinically useful as immunomodulatory agents for demyelinating diseases through a novel mechanism involving microglial phenotype switching

    Tandem mass tag-based quantitative proteomic analysis identification of succinylation related proteins in pathogenesis of thoracic aortic aneurysm and aortic dissection

    No full text
    Background Thoracic aortic aneurysm and dissection (TAAD) are devastating cardiovascular diseases with a high rate of disability and mortality. Lysine succinylation, a newly found post-translational modification, has been reported to play an important role in cardiovascular diseases. However, how succinylation modification influences TAAD remains obscure. Methods Ascending aortic tissues were obtained from patients with thoracic aortic aneurysm (TAA, n = 6), thoracic aortic dissection (TAD) with pre-existing aortic aneurysm (n = 6), and healthy subjects (n = 6). Global lysine succinylation level was analyzed by Western blotting. The differentially expressed proteins (DEPs) were analyzed by tandem mass tag (TMT) labeling and mass spectrometry. Succinylation-related proteins selected from the literature review and AmiGO database were set as a reference inventory for further analysis. Then, the pathological aortic sections were chosen to verify the proteomic results by Western blotting and qRT-PCR. Results The level of global lysine succinylation significantly increased in TAA and TAD patients compared with healthy subjects. Of all proteins identified by proteomic analysis, 197 common DEPs were screened both in TAA and TAD group compared with the control group, of which 93 proteins were significantly upregulated while 104 were downregulated. Among these 197 DEPs, OXCT1 overlapped with the succinylation-related proteins and was selected as the target protein involved in thoracic aortic pathogenesis. OXCT1 was further verified by Western blotting and qRT-PCR, and the results showed that OXCT1 in TAA and TAD patients was significantly lower than that in healthy donors (p < 0.001), which was consistent with the proteomic results. Conclusions OXCT1 represents novel biomarkers for lysine succinylation of TAAD and might be a therapeutic target in the future
    corecore