1,343 research outputs found
Numerical modeling on the seismic responses of a large underground structure in soft ground
To estimate the earthquake damages of a large subway station built in soft ground, a soil-underground structure static and dynamic coupling interaction model is advanced with the strong nonlinear properties of soil modeled by a developed viscous-plastic constitutive model. The numerical modeling results show that the large underground structure in soft site has a large vertical relative deformation during the horizontal earthquake, which could be larger than its horizontal relative deformation. The dynamic deformation responses of the components near to the middle span of the underground structure are obviously larger those of the other components at the side spans, which means that these components near to the middle span are more apt to be damaged in horizontal earthquake. According to the horizontal relative deformation and the seismic damage process of the large underground structure, which limited elastic working state and the limited elastic-plastic working state are determined, and the maximal interlayer displacement angles are suggested to be 1/430 for the limited elastic working state and 1/185 for the limited elastic-plastic working state. In addition, the seismic soil pressure coefficients on the upper side wall have significant changes. To the large underground structure shown in this paper, the seismic soil pressure coefficients on the top half of the upper side wall should be defined alone in its seismic design
Deformable Groupwise Registration Using a Locally Low-Rank Dissimilarity Metric for Myocardial Strain Estimation from Cardiac Cine MRI Images
Objective: Cardiovascular magnetic resonance-feature tracking (CMR-FT)
represents a group of methods for myocardial strain estimation from cardiac
cine MRI images. Established CMR-FT methods are mainly based on optical flow or
pairwise registration. However, these methods suffer from either inaccurate
estimation of large motion or drift effect caused by accumulative tracking
errors. In this work, we propose a deformable groupwise registration method
using a locally low-rank (LLR) dissimilarity metric for CMR-FT. Methods: The
proposed method (Groupwise-LLR) tracks the feature points by a groupwise
registration-based two-step strategy. Unlike the globally low-rank (GLR)
dissimilarity metric, the proposed LLR metric imposes low-rankness on local
image patches rather than the whole image. We quantitatively compared
Groupwise-LLR with the Farneback optical flow, a pairwise registration method,
and a GLR-based groupwise registration method on simulated and in vivo
datasets. Results: Results from the simulated dataset showed that Groupwise-LLR
achieved more accurate tracking and strain estimation compared with the other
methods. Results from the in vivo dataset showed that Groupwise-LLR achieved
more accurate tracking and elimination of the drift effect in late-diastole.
Inter-observer reproducibility of strain estimates was similar between all
studied methods. Conclusion: The proposed method estimates myocardial strains
more accurately due to the application of a groupwise registration-based
tracking strategy and an LLR-based dissimilarity metric. Significance: The
proposed CMR-FT method may facilitate more accurate estimation of myocardial
strains, especially in diastole, for clinical assessments of cardiac
dysfunction
Age-Associated Loss of Lamin-B Leads to Systemic Inflammation and Gut Hyperplasia
SummaryAging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unclear. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to deregulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by age-associated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and derepression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during mammalian aging.PaperFlic
- …