1,168 research outputs found

    Traveling Wave Solutions of a Reaction-Diffusion Equation with State-Dependent Delay

    Full text link
    This paper is concerned with the traveling wave solutions of a reaction-diffusion equation with state-dependent delay. When the birth function is monotone, the existence and nonexistence of monotone traveling wave solutions are established. When the birth function is not monotone, the minimal wave speed of nontrivial traveling wave solutions is obtained. The results are proved by the construction of upper and lower solutions and application of the fixed point theorem

    Direct Measurement of Piezoelectric Response around Ferroelectric Domain Walls in Crystals with Engineered Domain Configuration

    Full text link
    We report the first investigation of the piezoelectric response on a nanoscale in the poled ferroelectric crystals with engineered configuration of domains. Piezoresponse force microscopy of tetragonal 0.63PMN-0.37PT relaxor-based ferroelectric crystals reviled that the d33 piezoelectric coefficient is significantly reduced within the distance of about 1 um from the uncharged engineered domain wall. This finding is essential for understanding the mechanisms of the giant piezoresponse in relaxor-based crystals and for designing new piezoelectric materials

    On the α\alpha-spectral radius of hypergraphs

    Full text link
    For real α∈[0,1)\alpha\in [0,1) and a hypergraph GG, the α\alpha-spectral radius of GG is the largest eigenvalue of the matrix Aα(G)=αD(G)+(1−α)A(G)A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G), where A(G)A(G) is the adjacency matrix of GG, which is a symmetric matrix with zero diagonal such that for distinct vertices u,vu,v of GG, the (u,v)(u,v)-entry of A(G)A(G) is exactly the number of edges containing both uu and vv, and D(G)D(G) is the diagonal matrix of row sums of A(G)A(G). We study the α\alpha-spectral radius of a hypergraph that is uniform or not necessarily uniform. We propose some local grafting operations that increase or decrease the α\alpha-spectral radius of a hypergraph. We determine the unique hypergraphs with maximum α\alpha-spectral radius among kk-uniform hypertrees, among kk-uniform unicyclic hypergraphs, and among kk-uniform hypergraphs with fixed number of pendant edges. We also determine the unique hypertrees with maximum α\alpha-spectral radius among hypertrees with given number of vertices and edges, the unique hypertrees with the first three largest (two smallest, respectively) α\alpha-spectral radii among hypertrees with given number of vertices, the unique hypertrees with minimum α\alpha-spectral radius among the hypertrees that are not 22-uniform, the unique hypergraphs with the first two largest (smallest, respectively) α\alpha-spectral radii among unicyclic hypergraphs with given number of vertices, and the unique hypergraphs with maximum α\alpha-spectral radius among hypergraphs with fixed number of pendant edges
    • …
    corecore