16 research outputs found

    Gremlin1 Delivered by Mesenchymal Stromal Cells Promoted Epithelial-Mesenchymal Transition in Human Esophageal Squamous Cell Carcinoma

    Get PDF
    Backgroud/Aims: Mesenchymal stromal cells (MSCs) are a major component of the tumor microenvironment (TME). Several studies focusing on tumor-derived MSCs have demonstrated that they exhibit a strong ability to promote the tumor epithelial-mesenchymal transition (EMT). However, the factors mediating these effects are poorly understood. Methods: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry assays were used to detect the expression of Gremlin1 (GREM1) in human esophageal squamous cell carcinoma (ESCC) tissues. ShRNA silencing, flow cytometry, cell counting kit (CCK8) assay, invasion assay, western blot were used to detect the effect of GREM1 in ECa109, TE-1 cell lines and xenograft tumor models. Results: In the current study, we found that the GREM1 was overexpressed in human ESCC tissues. The conditioned medium from mesenchymal stromal cells (MSCs-CM) enhanced the malignancy of xenograft esophageal tumors in vivo, as well as the cell proliferation, viability and invasion of the esophageal carcinoma cell lines ECa109 and TE-1 in vitro. Furthermore, the shRNA silencing of GREM1 in MSCs (shGREM1-MSCs) reversed the increased malignancy of the esophageal tumor in vivo, while the conditioned medium from shGREM1-MSCs (shGREM1-MSCs-CM) affected the cell cycle and cell invasion in vitro. These processes were accompanied by the EMT in the ECa109 and TE-1 cell lines with an alteration in the expression levels of mesenchymal and epithelial markers. Furthermore, the TGF-β/BMP (transforming growth factor-beta/bone morphogenetic protein) signaling pathway participated in the shGREM1-MSCs-CM-induced anti-tumor effect on enhanced esophageal malignancy induced by MSCs-CM treatment. Conclusions: Taken together, our study suggested that GREM1 delivered by MSCs promoted EMT in ESCC in vitro and in vivo, which is partly through TGF-β/BMP signaling pathway. The results provide experimental evidence to a potential therapeutic target in the treatment of esophageal cancer

    A Novel Method to Realize Optical Correlation Recognition Based on Neural Network

    No full text

    Experimentation and Analysis of Intra-Cavity Beam-Splitting Method to Enhance the Uniformity of Light in the Powersphere

    No full text
    The powersphere is a spherical enclosed receiver composed of multiple photovoltaic cells. It serves as a replacement for traditional photovoltaic panels in laser wireless power transmission systems for optoelectronic conversion. The ideal powersphere aims to achieve a uniform distribution of light within the cavity through infinite reflections, reducing energy losses in the circuit. However, due to the high absorption rate of the photovoltaic cells, the direct irradiation area on the inner surface of the powersphere exhibits a significantly higher light intensity than the reflected area, resulting in a suboptimal level of light uniformity and certain circuit losses. To address the aforementioned issues, a method of intra-cavity beam splitting in the powersphere is proposed. This solution aims to increase the area of direct illumination and reduce the intensity difference between direct and reflected lights, thereby improving the light uniformity on the inner surface of the powersphere. Utilizing the transformation matrix of Gaussian beams, the q parameters for each optical path with beam splitting were calculated, and the equality of corresponding q values was demonstrated. Further, based on the q parameter expression for the electric field of Gaussian beams, the intensities for each optical path were calculated, and it was demonstrated that their values are equal. Additionally, an optical software was utilized to establish a model for intra-cavity beam splitting in the powersphere. Based on this model, a beam-splitting system was designed using a semi-transparent and semi-reflective lens as the core component. The light uniformity performance of the proposed system was analyzed through simulations. To further validate the effectiveness of the calculations, design, and simulations, multiple lenses were employed to construct the beam-splitting system. An experimental platform was set up, consisting of a semiconductor laser, monocrystalline silicon photovoltaic cells, beam expander, Fresnel lens, beam-splitting system, and powersphere. An experimental verification was conducted, and the results aligned with the theoretical calculations and simulated outcomes. The above theory, simulations, and experiments demonstrate that the intra-cavity beam-splitting method effectively enhances the optical uniformity within the powersphere

    ISL1 overexpression enhances the survival of transplanted human mesenchymal stem cells in a murine myocardial infarction model

    No full text
    Abstract Background The LIM-homeobox transcription factor islet-1 (ISL1) has been proposed as a marker for cardiovascular progenitor cells. This study investigated whether forced expression of ISL1 in human mesenchymal stem cells (hMSCs) improves myocardial infarction (MI) treatment outcomes. Methods The lentiviral vector containing the human elongation factor 1α promoter, which drives the expression of ISL1 (EF1α-ISL1), was constructed using the Multisite Gateway System and used to transduce hMSCs. Flow cytometry, immunofluorescence, Western blotting, TUNEL assay, and RNA sequencing were performed to evaluate the function of ISL1-overexpressing hMSCs (ISL1-hMSCs). Results The in vivo results showed that transplantation of ISL1-hMSCs improved cardiac function in a rat model of MI. Left ventricle ejection fraction and fractional shortening were greater in post-MI hearts after 4 weeks of treatment with ISL1-hMSCs compared with control hMSCs or phosphate-buffered saline. We also found that ISL1 overexpression increased angiogenesis and decreased apoptosis and inflammation. The greater potential of ISL1-hMSCs may be attributable to an increased number of surviving cells after transplantation. Conditioned medium from ISL1-hMSCs decreased the apoptotic effect of H2O2 on the cardiomyocyte cell line H9c2. To clarify the molecular basis of this finding, we employed RNA sequencing to compare the apoptotic-related gene expression profiles of control hMSCs and ISL1-hMSCs. The results showed that insulin-like growth factor binding protein 3 (IGFBP3) was the only gene in ISL1-hMSCs with a RPKM value higher than 100 and that the difference fold-change between ISL1-hMSCs and control hMSCs was greater than 3, suggesting that IGFBP3 might play an important role in the anti-apoptosis effect of ISL1-hMSCs through paracrine effects. Furthermore, the expression of IGFBP3 in the conditioned medium from ISL1-hMSCs was almost fourfold greater than that in conditioned medium from control hMSCs. Moreover, the IGFBP3 neutralization antibody reversed the apoptotic effect of ISL1-hMSCs-CM. Conclusions These results suggest that overexpression of ISL1 in hMSCs promotes cell survival in a model of MI and enhances their paracrine function to protect cardiomyocytes, which may be mediated through IGFBP3. ISL1 overexpression in hMSCs may represent a novel strategy for enhancing the effectiveness of stem cell therapy after MI

    Fine Mapping and Functional Analysis of Major Regulatory Genes of Soluble Solids Content in Wax Gourd (Benincasa hispida)

    No full text
    Soluble solids content (SSC) is an important quality trait of wax gourd, but reports about its regulatory genes are scarce. In this study, the SSC regulatory gene BhSSC2.1 in wax gourd was mined via quantitative trait locus (QTL) mapping based on high-density genetic mapping containing 12 linkage groups (LG) and bulked segregant analysis (BSA)-seq. QTL mapping and BSA-seq revealed for the first time that the SSC QTL (107.658–108.176 cM) of wax gourd was on Chr2 (LG2). The interpretable phenotypic variation rate and maximum LOD were 16.033% and 6.454, respectively. The QTL interval contained 13 genes. Real-time fluorescence quantitative expression analysis, functional annotation, and sequence analysis suggested that Bch02G016960, named BhSSC2.1, was a candidate regulatory gene of the SSC in wax gourd. Functional annotation of this gene showed that it codes for a NADP-dependent malic enzyme. According to BhSSC2.1 sequence variation, an InDel marker was developed for molecular marker-assisted breeding of wax gourd. This study will lay the foundation for future studies regarding breeding and understanding genetic mechanisms of wax gourd

    Development and Application of InDel Markers Linked to Fruit-Shape and Peel-Colour Genes in Wax Gourd

    No full text
    The wax gourd is commonly grown in many countries because of its high nutritional and economic value. While the genes for the fruit shape and peel colour of wax gourd have been reported, the InDel markers linked to these genes remain undeveloped. In this study, the InDel markers linked to fruit-shape (Bch02G016830) and peel-colour (Bch05G003950) genes were developed from resequenced data. We used 120 inbred lines, 536 isolated populations, and 4 commercial hybrids to evaluate the validity and application value of the InDel markers. The accuracy rates of nine pairs of fruit-shape InDel markers (GX1-GX9) were 84.16–91.66% in 120 inbred lines. The accuracy rates of 27 pairs of peel-colour InDel markers (PS1-PS27) within approximately 3.0 Mb upstream and 3.0 Mb downstream of the peel-colour gene were 100% and those of 6 pairs of peel-colour InDel markers (PS28-PS33) within 3.0–20 Mb upstream and downstream of the peel-colour gene were 55.83–90% in 120 inbred lines. The purity of four commercial hybrids determined using GX1, GX2, PS13, and PS14 was highly consistent with the field results for purity determination. Our results provide important information for genetic linkage map construction, molecular-marker-assisted selective breeding, and purity determination of wax gourd hybrids

    Aggravated pneumonia and diabetes in SARS-CoV-2 infected diabetic mice

    No full text
    ABSTRACTMultiple clinical and epidemiological studies have shown an interconnection between coronavirus disease 2019 (COVID-19) and diabetes, but experimental evidence is still lacking. Understanding the interplay between them is important because of the global health burden of COVID-19 and diabetes. We found that C57BL/6J mice were susceptible to the alpha strain of SARS-CoV-2. Moreover, diabetic C57BL/6J mice with leptin receptor gene deficiency (db/db mice) showed a higher viral load in the throat and lung and slower virus clearance in the throat after infection than C57BL/6J mice. Histological and multifactor analysis revealed more advanced pulmonary injury and serum inflammation in SARS-CoV-2 infected diabetic mice. Moreover, SARS-CoV-2 infected diabetic mice exhibited more severe insulin resistance and islet cell loss than uninfected diabetic mice. By RNA sequencing analysis, we found that diabetes may reduce the collagen level, suppress the immune response and aggravate inflammation in the lung after infection, which may account for the greater susceptibility of diabetic mice and their more severe lung damage after infection. In summary, we successfully established a SARS-CoV-2 infected diabetic mice model and demonstrated that diabetes and COVID-19 were risk factors for one another
    corecore