607 research outputs found

    Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions

    Full text link
    We present a quantum analysis of three-mode optoacoustic parametric interactions in an optical cavity, in which two orthogonal transverse optical-cavity modes are coupled to one acoustic mode through radiation pressure. Due to the optimal frequency matching -- the frequency separation of two cavity modes is equal to the acoustic-mode frequency -- the carrier and sideband fields simultaneously resonate and coherently build up. This mechanism significantly enhances the optoacoustic couplings in the quantum regime. It allows exploration of quantum behavior of optoacoustic interactions in small-scale table-top experiments. We show explicitly that given an experimentally achievable parameter, three-mode scheme can realize quantum ground-state cooling of milligram scale mechanical oscillators and create robust stationary tripartite optoacoustic quantum entanglements.Comment: 20 pages, 5 figure

    Impact of Sensor Zenith Angle on MOD10A1 Data Reliability and Modification of Snow Cover Data for the Tarim River Basin

    Get PDF
    Snow in the mountainous watersheds of the Tarim River Basin is the primary source of water for western China. The Snow Cover Daily L3 Global 500-m Grid (MOD10A1) remote sensing dataset has proven extremely valuable for monitoring the changing snow cover patterns over large spatial areas; however, inherent uncertainty associated with large sensor zenith angles (SZAs) has called its reliability into question. Comparative analysis that utilized a paired-date difference method for parameters such as snow cover frequency, snow cover percentage, and normalized difference snow index (NDSI) has shown that overestimation of snow cover in the Tarim River Basin correlates with high values of SZA. Hence, such overestimation was associated with an increase in the NDSI, attributable to the change in reflectance between Band 4 and Band 6 imagery. A maximum threshold value of SZA of 22.37° was used alongside a multiday refilling method to modify the MOD10A1 dataset to produce a new daily snow cover map of the Tarim River Basin, spanning a 10-year period. A comparison of benchmark results of snow cover classification produced by the HJ-1A/B satellite revealed an increase in the overall accuracy of up to 4%, confirming the usefulness of our modified MOD10A1 data

    Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gamma-aminobutyric acid is a major inhibitory neurotransmitter in mammalian brains, and has several well-known physiological functions. Lactic acid bacteria possess special physiological activities and are generally regarded as safe. Therefore, using lactic acid bacteria as cell factories for gamma-aminobutyric acid production is a fascinating project and opens up a vast range of prospects for making use of GABA and LAB. We previously screened a high GABA-producer <it>Lactobacillus brevis </it>NCL912 and optimized its fermentation medium composition. The results indicated that the strain showed potential in large-scale fermentation for the production of gamma-aminobutyric acid. To increase the yielding of GABA, further study on the fermentation process is needed before the industrial application in the future. In this article we investigated the impacts of pyridoxal-5'-phosphate, pH, temperature and initial glutamate concentration on gamma-aminobutyric acid production by <it>Lactobacillus brevis </it>NCL912 in flask cultures. According to the data obtained in the above, a simple and effective fed-batch fermentation method was developed to highly efficiently convert glutamate to gamma-aminobutyric acid.</p> <p>Results</p> <p>Pyridoxal-5'-phosphate did not affect the cell growth and gamma-aminobutyric acid production of <it>Lb. brevis </it>NCL912. Temperature, pH and initial glutamate concentration had significant effects on the cell growth and gamma-aminobutyric acid production of <it>Lb. brevis </it>NCL912. The optimal temperature, pH and initial glutamate concentration were 30-35°C, 5.0 and 250-500 mM. In the following fed-batch fermentations, temperature, pH and initial glutamate concentration were fixed as 32°C, 5.0 and 400 mM. 280.70 g (1.5 mol) and 224.56 g (1.2 mol) glutamate were supplemented into the bioreactor at 12 h and 24 h, respectively. Under the selected fermentation conditions, gamma-aminobutyric acid was rapidly produced at the first 36 h and almost not produced after then. The gamma-aminobutyric acid concentration reached 1005.81 ± 47.88 mM, and the residual glucose and glutamate were 15.28 ± 0.51 g L<sup>-1 </sup>and 134.45 ± 24.22 mM at 48 h.</p> <p>Conclusions</p> <p>A simple and effective fed-batch fermentation method was developed for <it>Lb. brevis </it>NCL912 to produce gamma-aminobutyric acid. The results reveal that <it>Lb. brevis </it>NCL912 exhibits a great application potential in large-scale fermentation for the production of gamma-aminobutyric acid.</p

    Predicting hyperlinks via hypernetwork loop structure

    Full text link
    While links in simple networks describe pairwise interactions between nodes, it is necessary to incorporate hypernetworks for modeling complex systems with arbitrary-sized interactions. In this study, we focus on the hyperlink prediction problem in hypernetworks, for which the current state-of-art methods are latent-feature-based. A practical algorithm via topological features, which can provide understandings of the organizational principles of hypernetworks, is still lacking. For simple networks, local clustering or loop reflects the correlations among nodes; therefore, loop-based link prediction algorithms have achieved accurate performance. Extending the idea to hyperlink prediction faces several challenges. For instance, what is an effective way of defining loops for prediction is not clear yet; besides, directly comparing topological statistics of variable-sized hyperlinks could introduce biases in hyperlink cardinality. In this study, we address the issues and propose a loop-based hyperlink prediction approach. First, we discuss and define the loops in hypernetworks; then, we transfer the loop-features into a hyperlink prediction algorithm via a simple modified logistic regression. Numerical experiments on multiple real-world datasets demonstrate superior performance compared to the state-of-the-art methods

    Exercise blood pressure, cardiorespiratory fitness, fatness and cardiovascular risk in children and adolescents

    Get PDF
    Cardiovascular disease remains the leading cause of mortality on a global scale. Individuals who possess risk factors for cardiovascular disease, such as high blood pressure (BP) and obesity, face an elevated risk of experiencing organ-specific pathophysiological changes. This damage includes pathophysiological changes in the heart and peripheral vascular systems, such as ventricular hypertrophy, arterial stiffening, and vascular narrowing and stenosis. Consequently, these damages are associated with an increased risk of developing severe cardiovascular outcomes including stroke, myocardial infarction, heart failure, and coronary heart disease. Among all the risk factors associated with cardiovascular disease, high blood pressure emerges as the most prominent. However, conventional resting BP measurement methods such as auscultatory or oscillometric methods may fail to identify many individuals with asymptomatic high BP. Recently, exercise BP has emerged as a valuable diagnostic tool for identifying real (high) blood pressure levels and assessing underlying cardiovascular risk, in addition to resting BP measurements in adults. Furthermore, numerous established factors, such as low cardiorespiratory fitness and high body fatness, have been confirmed to contribute to exercise BP and the associated cardiovascular risk. Modifying these factors may help reduce high exercise BP and, consequently, alleviate the burden of cardiovascular disease. A significant body of evidence has demonstrated cardiovascular disease in later life have their origins in early life. Children and adolescents with these cardiovascular risk factors also possess a greater propensity to develop cardiovascular diseases later in life. Nevertheless, the majority of previous studies on the clinical utility of exercise BP have been conducted in middle-to-older aged populations, often with pre-existing clinical conditions. Therefore, there is a need to investigate further of the factors influencing exercise BP in adolescence and its association with cardiovascular risk in early life. Our previously published work showed that exercise BP is a potential useful method to detect adolescents with increased cardiovascular risk. Children and adolescents with cardiovascular risk factors are more likely to develop cardiovascular diseases later in life. However, previous studies on the clinical utility of exercise BP have largely focused on middle-to-older aged populations with pre-existing clinical conditions. Therefore, there is a need to investigate further the factors influencing exercise BP in adolescence and its association with future cardiovascular risk. Our previous studies, which focused on exercise BP measured at submaximal intensity, have shown that exercise BP is a potentially useful method for identifying adolescents at increased cardiovascular risk. Our previous findings suggest that improving cardio-respiratory fitness and reducing body fatness may help to reduce the risk of developing cardiovascular disease and improve overall cardiovascular health. These findings have important implications for the development of effective prevention and early detection strategies, which can contribute to improved public health outcomes
    corecore