795 research outputs found
Very high resolution UV and X-ray spectroscopy and imagery of solar active regions
A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique
Lyman alpha initiated winds in late-type stars
The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined
Multi-wavelength observations of Proxima Centauri
We report simultaneous observations of the nearby flare star Proxima Centauri
with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and
X-ray observations cover the star's quiescent state, as well as its flaring
activity and allow us to probe the stellar atmospheric conditions from the
photosphere into the chromosphere, and then the corona during its different
activity stages. Using the X-ray data, we investigate variations in coronal
densities and abundances and infer loop properties for an intermediate-sized
flare. The optical data are used to investigate the magnetic field and its
possible variability, to construct an emission line list for the chromosphere,
and use certain emission lines to construct physical models of Proxima
Centauri's chromosphere.
We report the discovery of a weak optical forbidden Fe xiii line at 3388 AA
during the more active states of Proxima Centauri. For the intermediate flare,
we find two secondary flare events that may originate in neighbouring loops,
and discuss the line asymmetries observed during this flare in H i, He i, and
Ca ii lines. The high time-resolution in the H alpha line highlights strong
temporal variations in the observed line asymmetries, which re-appear during a
secondary flare event. We also present theoretical modelling with the stellar
atmosphere code PHOENIX to construct flaring chromospheric models.Comment: 19 pages, 22 figures, accepted by A&
A Significant Population of Candidate New Members of the ρ Ophiuchi Cluster
We present a general method for identifying the pre-main-sequence population of any star-forming region, unbiased with respect to the presence or absence of disks, in contrast to samples selected primarily via their mid-infrared emission from Spitzer surveys. We have applied this technique to a new, deep, wide-field, near-infrared imaging survey of the ρ Ophiuchi cloud core to search for candidate low-mass members. In conjunction with published Spitzer IRAC photometry and least-squares fits of model spectra (COND, DUSTY, NextGen, and blackbody) to the observed spectral energy distributions, we have identified 948 candidate cloud members within our 90% completeness limits of J = 20.0, H = 20.0, and Ks = 18.50. This population represents a factor of ~3 increase in the number of known young stellar objects in the ρ Ophiuchi cloud. A large fraction of the candidate cluster members (81% ± 3%) exhibit infrared excess emission consistent with the presence of disks, thus strengthening the possibility of their being bona fide cloud members. Spectroscopic follow-up will confirm the nature of individual objects, better constrain their parameters, and allow an initial mass function to be derived
A Near-Infrared L Band Survey of the Young Embedded Cluster NGC 2024
We present the results of the first sensitive L band (3.4 micron) imaging
study of the nearby young embedded cluster NGC 2024. Two separate surveys of
the cluster were acquired in order to obtain a census of the circumstellar disk
fraction in the cluster. From an analysis of the JHKL colors of all sources in
our largest area, we find an infrared excess fraction of > 86%. The JHKL colors
suggest that the infrared excesses arise in circumstellar disks, indicating
that the majority of the sources which formed in the NGC 2024 cluster are
currently surrounded by, and likely formed with circumstellar disks. The excess
fractions remain very high, within the errors, even at the faintest L
magnitudes from our deeper surveys suggesting that disks form around the
majority of the stars in very young clusters such as NGC 2024 independent of
mass. From comparison with published JHKL observations of Taurus, we find the K
- L excess fraction in NGC 2024 to be consistent with a high initial incidence
of circumstellar disks in both NGC 2024 and Taurus. Because NGC 2024 represents
a region of much higher stellar density than Taurus, this suggests that disks
may form around most of the YSOs in star forming regions independent of
environment. We find a relatively constant JHKL excess fraction with increasing
cluster radius, indicating that the disk fraction is independent of location in
the cluster. In contrast, the JHK excess fraction increases rapidly toward the
central region of the cluster, and is most likely due to contamination of the K
band measurements by bright nebulosity in the central regions of the cluster.
We identify 45 candidate protostellar sources in the central regions of the NGC
2024 cluster, and find a lower limit on the protostellar phase of early stellar
evolution of 0.4 - 1.4 X 10^5 yr, similar to that in Taurus.Comment: 37 pages, 8 figures, 3 tables, To appear in the Astronomical Journa
X-Ray Evidence for Flare Density Variations and Continual Chromospheric Evaporation in Proxima Centauri
Using the XMM-Newton X-ray observatory to monitor the nearest star to the
Sun, Proxima Centauri, we recorded the weakest X-ray flares on a magnetically
active star ever observed. Correlated X-ray and optical variability provide
strong support for coronal energy and mass supply by a nearly continuous
sequence of rapid explosive energy releases. Variable emission line fluxes were
observed in the He-like triplets of OVII and NeIX during a giant flare. They
give direct X-ray evidence for density variations, implying densities between
2x10^{10} - 4x10^{11} cm^{-3} and providing estimates of the mass and the
volume of the line-emitting plasma. We discuss the data in the context of the
chromospheric evaporation scenario.Comment: 10 pages, 2 figures, accepted by The Astrophysical Journal, Letters;
improved calculations of radiative loss of cool plasma (toward end of paper
- …