401 research outputs found

    Inaugural Editorial

    Get PDF

    Deciphering the intricate hierarchical gene regulatory network: unraveling multi-level regulation and modifications driving secondary cell wall formation

    Get PDF
    Wood quality is predominantly determined by the amount and the composition of secondary cell walls (SCWs). Consequently, unraveling the molecular regulatory mechanisms governing SCW formation is of paramount importance for genetic engineering aimed at enhancing wood properties. Although SCW formation is known to be governed by a hierarchical gene regulatory network (HGRN), our understanding of how a HGRN operates and regulates the formation of heterogeneous SCWs for plant development and adaption to ever-changing environment remains limited. In this review, we examined the HGRNs governing SCW formation and highlighted the significant key differences between herbaceous Arabidopsis and woody plant poplar. We clarified many confusions in existing literatures regarding the HGRNs and their orthologous gene names and functions. Additionally, we revealed many network motifs including feed-forward loops, feed-back loops, and negative and positive autoregulation in the HGRNs. We also conducted a thorough review of post-transcriptional and post-translational aspects, protein–protein interactions, and epigenetic modifications of the HGRNs. Furthermore, we summarized how the HGRNs respond to environmental factors and cues, influencing SCW biosynthesis through regulatory cascades, including many regulatory chains, wiring regulations, and network motifs. Finally, we highlighted the future research directions for gaining a further understanding of molecular regulatory mechanisms underlying SCW formation

    Breeding polyploid Populus: progress and perspective

    Get PDF
    Populus is a genus of 25−30 species of deciduous flowering plants in the family Salicaceae, which are primarily planted in short-rotation planations for producing timber, pulpwood, wooden products as well as bioenergy feedstock; they are also widely planted in agricultural fields and along roadsides as shelter forest belts for windbreak, decoration, and reduction of pollutants and noise. Moreover, their fast-growth and good adaptation to marginal lands enable them to provide some critical ecosystem services at various phytoremediation sites for land restoration and reclaimation. Thanks to their important roles, breeding for fast growing poplar trees has been one of the most important objectives for nearly a century. One of the most demonstrated, documented achievements in this aspect is polyploid breeding, especially triploid breeding. This paper critically reviews the various techniques used in inducing triploid plants, including natural 2n formation, artificial induction of 2n male and female gemmates through chemical or physical treatments, trait characterization of the triploid and tetraploid breeding populations, unveiling the molecular mechanisms underpinning the significantly improved traits, and identification and selection of the best triploid progenies. This review also recapitulated the challenges and strategies facing the future of triploid breeding in Populus, including amelioration of 2n gamete induction techniques and efficiency, selection of the best parents and identification of the best progrenies, utilization of the huge amount of genomic, transcriptomic, proteomic, metabolomic, and other omics data for selecting parents for improving target traits

    Overexpression of BplERD15 enhances drought tolerance in Betula platyphylla Suk

    Get PDF
    In this study, we report the cloning and functional characterization of an early responsive gene, BplERD15, from Betula platyphylla Suk to dehydration. BplERD15 is located in the same branch as Morus indica Linnaeus ERD15 and Arabidopsis Heynh ERD15 in the phylogenetic tree built with ERD family protein sequences. The tissue-specific expression patterns of BplERD15 were characterized using qRT-PCR and the results showed that the transcript levels of BplERD15 in six tissues were ranked from the highest to the lowest levels as the following: mature leaves (ML) \u3e young leaves (YL) \u3e roots (R) \u3ebuds (B) \u3eyoung stems (YS) \u3emature stems (MS). Multiple drought experiments were simulated by adding various osmotica including polyethylene glycol, mannitol, and NaCl to the growth media to decrease their water potentials, and the results showed that the expression of BplERD15 could be induced to 12, 9, and 10 folds, respectively, within a 48 h period. However, the expression level of BplERD15 was inhibited by the plant hormone abscisic acid in the early response and then restored to the level of control. The BplERD15 overexpression (OE) transgenic birch lines were developed and they did not exhibit any phenotypic anomalies and growth deficiency under normal condition. Under drought condition, BplERD15-OE1, 3, and 4 all displayed some drought tolerant characteristics and survived from the drought while the wild type (WT) plants withered and then died. Analysis showed that all BplERD15-OE lines had significant lower electrolyte leakage levels as compared to WT. Our study suggests that BplERD15 is a drought-responsive gene that can reduce mortality under stress condition

    The diverse roles of cytokinins in regulating leaf development

    Get PDF
    Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stages of leaf cell development, respectively. During leaf senescence, cytokinins reduce sugar accumulation, increase chlorophyll synthesis, and prolong the leaf photosynthetic period. We also briefly describe the roles of other hormones, including auxin and ethylene, during the whole leaf developmental process. In this study, we review the regulatory roles of cytokinins in various leaf developmental stages, with a focus on cytokinin metabolism and signal transduction processes, in order to shed light on the molecular mechanisms underlying leaf development

    Firing multistability in a locally active memristive neuron model

    Get PDF
    Funding Information: This work is supported by The Major Research Project of the National Natural Science Foundation of China (91964108), The National Natural Science Foundation of China (61971185), The Open Fund Project of Key Laboratory in Hunan Universities (18K010). Publisher Copyright: © 2020, Springer Nature B.V. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.The theoretical, numerical and experimental demonstrations of firing dynamics in isolated neuron are of great significance for the understanding of neural function in human brain. In this paper, a new type of locally active and non-volatile memristor with three stable pinched hysteresis loops is presented. Then, a novel locally active memristive neuron model is established by using the locally active memristor as a connecting autapse, and both firing patterns and multistability in this neuronal system are investigated. We have confirmed that, on the one hand, the constructed neuron can generate multiple firing patterns like periodic bursting, periodic spiking, chaotic bursting, chaotic spiking, stochastic bursting, transient chaotic bursting and transient stochastic bursting. On the other hand, the phenomenon of firing multistability with coexisting four kinds of firing patterns can be observed via changing its initial states. It is worth noting that the proposed neuron exhibits such firing multistability previously unobserved in single neuron model. Finally, an electric neuron is designed and implemented, which is extremely useful for the practical scientific and engineering applications. The results captured from neuron hardware experiments match well with the theoretical and numerical simulation results.Peer reviewedFinal Accepted Versio

    A systems biology approach identifies a regulator, BplERF1, of cold tolerance in Betula platyphylla

    Get PDF
    Cold is an abiotic stress that can greatly affect the growth and survival of plants. Here, we reported that an AP2/ERF family gene, BplERF1, isolated from Betula platyphylla played a contributing role in cold stress tolerance. Overexpression of BplERF1 in B. platyphylla transgenic lines enhanced cold stress tolerance by increasing the scavenging capability and reducing H2O2 and malondialdehyde (MDA) content in transgenic plants. Construction of BplERF-mediated multilayered hierarchical gene regulatory network (ML-hGRN), using Top-down GGM algorithm and the transcriptomic data of BplERF1 overexpression lines, led to the identification of five candidate target genes of BplERF1 which include MPK20, ERF9, WRKY53, WRKY70, and GIA1. All of them were then verified to be the true target genes of BplERF1 by chromatin-immunoprecipitation PCR (ChIP-PCR) assay. Our results indicate that BplERF1 is a positive regulator of cold tolerance and is capable of exerting regulation on the expression of cold signaling and regulatory genes, causing mitigation of reactive oxygen species

    Comparative proteomic analysis of leaves at different ages in allotriploid populus

    Get PDF
    Triploid poplar trees have been shown to have a number of growth advantages, especially much bigger leaves that contribute greatly to the increased biomass. In this study, we focused on the relationships between leaf age and leaf metabolism in triploids. We performed comparative proteomic analysis of the 5th (FDR5), 10th (FDR10), and 25th (FDR25) leaves from the apical meristems in allotriploids originated from first-division restitution (FDR). A total of 1970, 1916, and 1850 proteins were identified in the FDR5, FDR10, and FDR25, respectively. Principle component analysis (PCA) and differentially accumulated protein (DAP) analysis showed that FDR10 and FDR25 displayed higher similarities of protein accumulation patterns as compared to FDR5. MapMan enrichment analysis showed that several primary metabolic pathways or processes were significantly enriched in the DAPs. For example, photosynthesis, major CHO metabolism, glycolysis, N metabolism, redox, C1-metabolism, DNA, and protein turnover were significantly altered in both FDR10 and FDR25 compared with FDR5. In addition, amino acid metabolism and gluconeogenesis/glyoxylate cycle also underwent significant changes in FDR25 compared with FDR5. However, only amino acid metabolism was significantly enriched in the DAPs between FDR25 and FDR10. Further, DAP accumulation pattern analysis implied that FDR5, FDR10, and FDR25 were placed in the young, mature, and primary senescence stages of leaves. The most DAPs involved in the light reaction, photorespiration, Calvin cycle, starch and sucrose metabolism, pentose phosphate pathway (OPP), tricarboxylic acid (TCA) cycle, N metabolism, and C1-metabolism displayed higher accumulation in both FDR10 and FDR25 compared to FDR5. However, the most DAPs that are involved in cell wall and lipid metabolism, tetrapyrrole synthesis, nucleotide metabolism exhibited lower accumulation in both FDR10 and FDR25. Almost all DAPs between FDR-10 and FDR-25 showed a dramatic decrease in FDR25. KEGG enrichment analysis showed that carbon metabolism was altered significantly at different leaf ages. DAPs that are involved in carbon metabolism were predicted as different points in protein–protein interaction (PPI) networks from the STRING database. Finally, inconsistent transcript and protein abundance was found for DAPs, indicating the presence of posttranscriptional regulation during leaf-age progression process

    Synchronization of inertial memristive neural networks with time-varying delays via static or dynamic event-triggered control

    Get PDF
    Funding Information: This work was supported in part by the National Natural Science Foundation of China under Grant 61971185, the Major Research Project of the National Natural Science Foundation of China under Grant 91964108 and the Open Fund Project of Key Laboratory in Hunan Universities under Grant 18K010. Publisher Copyright: © 2020 Elsevier B.V.This paper investigates the synchronization problem of inertial memristive neural networks (IMNNs) with time-varying delays via event-triggered control (ETC) scheme and state feedback controller for the first time. First, two types of state feedback controllers are designed; the first type of controller is added to the transformational first-order system, and the second type of controller is added to the original second-order system. Next, based on each feedback controller, static event-triggered control (SETC) condition and dynamic event-triggered control (DETC) condition are presented to significantly reduce the update times of controller and decrease the computing cost. Then, some sufficient conditions are given such that synchronization of IMNNs with time-varying delays can be achieved under ETC schemes. Finally, a numerical simulation and some data analyses are given to verify the validity of the proposed results.Peer reviewe
    • …
    corecore