290 research outputs found

    Study of L0-norm constraint normalized subband adaptive filtering algorithm

    Full text link
    Limited by fixed step-size and sparsity penalty factor, the conventional sparsity-aware normalized subband adaptive filtering (NSAF) type algorithms suffer from trade-off requirements of high filtering accurateness and quicker convergence behavior. To deal with this problem, this paper proposes variable step-size L0-norm constraint NSAF algorithms (VSS-L0-NSAFs) for sparse system identification. We first analyze mean-square-deviation (MSD) statistics behavior of the L0-NSAF algorithm innovatively in according to a novel recursion form and arrive at corresponding expressions for the cases that background noise variance is available and unavailable, where correlation degree of system input is indicated by scaling parameter r. Based on derivations, we develop an effective variable step-size scheme through minimizing the upper bounds of the MSD under some reasonable assumptions and lemma. To realize performance improvement, an effective reset strategy is incorporated into presented algorithms to tackle with non-stationary situations. Finally, numerical simulations corroborate that the proposed algorithms achieve better performance in terms of estimation accurateness and tracking capability in comparison with existing related algorithms in sparse system identification and adaptive echo cancellation circumstances.Comment: 15 pages,15 figure

    The Security Challenges of the “One Belt, One Road” Initiative and China’s Choices

    Get PDF
    The Silk Road Economic Belt and the 21st Century Maritime Silk Road initiatives (“One Belt, One Road”) are of significance in enhancing China’s open economy. This article explores the dual security challenges faced by the “One Belt, One Road” initiative. These challenges include both traditional security challenges, such as great power competition, territorial and island disputes, and political turmoil in the region, as well as non-traditional threats such as terrorism, piracy, and transnational organized crime. This article analyzes the present situation of security cooperation in the region covered by “One Belt, One Road” and also suggests that China needs to pay special attention to three issues, namely the supply of public security goods, the interests of the United States and Russia, and the pivot of Pakistan, besides developing its own strength.The Silk Road Economic Belt and the 21st Century Maritime Silk Road initiatives (“One Belt, One Road”) are of significance in enhancing China’s open economy. This article explores the dual security challenges faced by the “One Belt, One Road” initiative. These challenges include both traditional security challenges, such as great power competition, territorial and island disputes, and political turmoil in the region, as well as non-traditional threats such as terrorism, piracy, and transnational organized crime. This article analyzes the present situation of security cooperation in the region covered by “One Belt, One Road” and also suggests that China needs to pay special attention to three issues, namely the supply of public security goods, the interests of the United States and Russia, and the pivot of Pakistan, besides developing its own strength

    A Comprehensive Research on Antibiotic Resistance Genes in Microbiota of Aquatic Animals

    Get PDF
    The occurrence of antibiotic resistance genes (ARGs) as emerging contaminants is of continued concern for human health. Antibiotics used in aquaculture have promoted the evolution and spread of ARGs. This study aimed to investigate the occurrence of 37 ARGs conferring resistance to six classes of antibiotics in 94 aquatic animals from five cities in southeast coast of China. The results showed that floR, sulII, sulI, strB, strA, aadA, and tetS were identified as the prominent ARGs with the high detection frequencies ranging from 30.9 to 51.1% in total samples. Then relative expression amount of seven prominent ARGs quantified by qPCR, ranging from 0.003 to 0.065. The tetS was the most abundant ARG among the seven ARGs. Though aadA was the second highest detection frequency of ARGs, it was the lowest expression amount ARG. The occurrences and abundances of ARGs in freshwater aquatic animals were greater than those in marine, reflecting the discrepancy of cultivation pattern between the freshwater and marine aquaculture. Shanghai was considered as the most prevalent site with 16 ARGs, and Ningbo merely contained 9 ARGs without of β-lactam ARGs and quinolone ARGs, showing variations of ARGs with geographical location. Eight kinds of sulfonamides and one chloramphenicol residues were further measured in samples from Shanghai. Interestingly, no target antibiotics were found, but sulfonamides resistance genes (sulI, sulII) and chloramphenicol resistance genes (floR) persisted at aquatic animals in the absence of selection pressure. Our research firstly shows comprehensive information on the ARGs in skin microbiota of aquatic animals, which could provide useful information and a new insight for better understanding on the ARGs dissemination in aquatic animals

    High Correlation Between Structure Development and Chemical Variation During Biofilm Formation by Vibrio parahaemolyticus

    Get PDF
    The complex three-dimensional structure of biofilms is supported by extracellular polymeric substances (EPSs) and additional insight on chemical variations in EPS and biofilm structure development will inform strategies for control of biofilms. Vibrio parahaemolyticus VPS36 biofilm development was studied using confocal laser scanning microscopy (CLSM) and Raman spectroscopy (RM). The structural parameters of the biofilm (biovolume, mean thickness, and porosity) were characterized by CLSM and the results showed that VPS36 biofilm formed dense structures after 48 h incubation. There were concurrent variations in carbohydrates and nucleic acids contents in the EPS as evidenced by RM. The Raman intensities of the chemical component in EPS, measured using Pearson’s correlation coefficient, were positively correlated with biovolume and mean thickness, and negatively correlated with porosity. The Raman intensity for carbohydrates correlated closely with mean thickness (p-value < 0.01) and the Raman intensity for nucleic acid correlated closely with porosity (p-value < 0.01). Additional evidence for these correlations were confirmed using scanning electron microscopic (SEM) and crystal violet staining

    A mcr-1-Carrying Conjugative IncX4 Plasmid in Colistin-Resistant Escherichia coli ST278 Strain Isolated From Dairy Cow Feces in Shanghai, China

    Get PDF
    Enterobacteriaceae, including Escherichia coli, has been shown to acquire the colistin resistance gene mcr-1. A strain of E. coli, EC11, which is resistant to colistin, polymyxin B and trimethoprim-sulfamethoxazole, was isolated in 2016 from the feces of a dairy cow in Shanghai, China. Strain EC11 identifies with sequence type ST278 and is susceptible to 19 frequently used antibiotics. Whole genome sequencing of strain EC11 showed that this strain contains a 31-kb resistance plasmid, pEC11b, which belongs to the IncX4 group. The mcr-1 gene was shown to be inserted into a 2.6-kb mcr-1-pap2 cassette of pEC11b. Plasmid pEC11b also contained putative conjugal transfer components, including an oriT-like region, relaxase, type IV coupling protein, and type IV secretion system. We were successful in transferring pEC11b to E. coli C600 with an average transconjugation efficiency of 4.6 × 10-5. Additionally, a MLST-based analysis comparing EC11 and other reported mcr-positive E. coli populations showed high genotypic diversity. The discovery of the E. coli strain EC11 with resistance to colistin in Shanghai emphasizes the importance of vigilance in detecting new threats like mcr genes to public health. Detection of mcr genes helps in tracking, slowing, and responding to the emergence of antibiotic resistance in Chinese livestock farming

    Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase.</p> <p>Results</p> <p>The alkaline α-amylase gene from <it>Bacillus alcalophilus </it>JN21 (CCTCC NO. M 2011229) was cloned and expressed in <it>Bacillus subtilis </it>strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the <it>K</it><sub>m </sub>and <it>V</it><sub>max </sub>of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min), respectively. The effects of medium compositions (starch, peptone, and soybean meal) and temperature on the recombinant production of alkaline α-amylase in <it>B. subtilis </it>were investigated. Under the optimal conditions (starch concentration 0.6% (w/v), peptone concentration 1.45% (w/v), soybean meal concentration 1.3% (w/v), and temperature 37°C), the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from <it>B. alcalophilus </it>JN21.</p> <p>Conclusions</p> <p>This is the first report concerning the heterologous expression of alkaline α-amylase in <it>B. subtilis</it>, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant <it>B. subtilis</it>.</p

    Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water

    Get PDF
    Biofilms, which are complex microbial communities embedded in the protective extracellular polymeric substances (EPS), are difficult to remove in food production facilities. In this study, the use of acidic electrolyzed water (AEW) to remove foodborne pathogen biofilms was evaluated. We used a green fluorescent protein-tagged Escherichia coli for monitoring the efficiency of AEW for removing biofilms, where under the optimal treatment conditions, the fluorescent signal of cells in the biofilm disappeared rapidly and the population of biofilm cells was reduced by more than 67%. Additionally, AEW triggered EPS disruption, as indicated by the deformation of the carbohydrate C-O-C bond and deformation of the aromatic rings in the amino acids tyrosine and phenylalanine. These deformations were identified by EPS chemical analysis and Raman spectroscopic analysis. Scanning electron microscopy (SEM) images confirmed that the breakup and detachment of biofilm were enhanced after AEW treatment. Further, AEW also eradicated biofilms formed by both Gram-negative bacteria (Vibrio parahaemolyticus) and Gram-positive bacteria (Listeria monocytogenes) and was observed to inactivate the detached cells which are a potential source of secondary pollution. This study demonstrates that AEW could be a reliable foodborne pathogen biofilm disrupter and an eco-friendly alternative to sanitizers traditionally used in the food industry

    Bis(6′-carb­oxy-2,2′-bipyridine-6-carboxyl­ato-κ3 N,N′,O 6)nickel(II) tetra­hydrate

    Get PDF
    In the title compound, [Ni(C12H7N2O4)2]·4H2O, the Ni atom is located at the centre of a distorted octa­hedron, formed by four N atoms and two O atoms from the same two tridentating chelated 6-carb­oxy-2,2′-bipyridine-6′-carboxyl­ate (L) ligands. Face-to-face π-stacking inter­actions between inversion-related pyridine rings with centroid–centroid distances of 3.548 (3) and 3.662 (3) Å (perpendicular distances between the respective rings are 3.314 and 3.438 Å) are found. Inter­molecular O—H⋯O hydrogen bonds between water mol­ecules and L ligands form R 5 3(10), R 6 5(14) and R 5 5(12) rings and also a centrosymmetric cage-like unit of water mol­ecules, which link eight adjacent NiII centers, forming a three-dimensional framework
    corecore