5 research outputs found

    A multiple-antigen detection assay for tuberculosis diagnosis based on broadly reactive polyclonal antibodies

    Get PDF
    Objective(s): Detection of circulating Mycobacterium tuberculosis (M. tuberculosis) antigens is promising in Tuberculosis (TB) diagnosis. However, not a single antigen marker has been found to be widely expressed in all TB patients. This study is aimed to prepare broadly reactive polyclonal antibodies targeting multiple antigen markers (multi-target antibodies) and evaluate their efficacies in TB diagnosis. Materials and Methods: A fusion gene consisting of 38kD, ESAT6, and CFP10 was constructed and overexpressed. The fusion polyprotein was used as an immunogen to elicit production of multi-target antibodies. Their reactivities were tested. Then, the multi-target antibodies and three corresponding antibodies elicited by each single antigen (mono-target antibodies) were evaluated with sandwich ELISA for detecting M. tuberculosis antigens. Their diagnostic efficacies for TB were also compared. Results: The polyprotein successfully elicited production of multi-target antibodies targeting 38kD, ESAT6, and CFP10 as analyzed by Western blotting. When used as coating antibodies, the multi-target antibodies were more efficient in capturing the three antigens than the corresponding mono-target antibodies. By testing clinical serum, the multi-target antibodies demonstrated significantly higher sensitivity for clinical TB diagnosis than all three mono-target antibodies. Conclusion: The multi-target antibodies allowed detecting multiple antigens simultaneously and significantly enhanced TB detection compared to routine mono-target antibodies. Our study may provide a promising strategy for TB diagnosis

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions
    corecore