31 research outputs found
Enhanced binding revisited for a spinless particle in non-relativistic QED
We consider a spinless particle coupled to a quantized Bose field and show
that such a system has a ground state for two classes of short-range potentials
which are alone too weak to have a zero-energy resonance
A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case
This article is concerned with the derivation and the mathematical study of a
new mean-field model for the description of interacting electrons in crystals
with local defects. We work with a reduced Hartree-Fock model, obtained from
the usual Hartree-Fock model by neglecting the exchange term. First, we recall
the definition of the self-consistent Fermi sea of the perfect crystal, which
is obtained as a minimizer of some periodic problem, as was shown by Catto, Le
Bris and Lions. We also prove some of its properties which were not mentioned
before. Then, we define and study in details a nonlinear model for the
electrons of the crystal in the presence of a defect. We use formal analogies
between the Fermi sea of a perturbed crystal and the Dirac sea in Quantum
Electrodynamics in the presence of an external electrostatic field. The latter
was recently studied by Hainzl, Lewin, S\'er\'e and Solovej, based on ideas
from Chaix and Iracane. This enables us to define the ground state of the
self-consistent Fermi sea in the presence of a defect. We end the paper by
proving that our model is in fact the thermodynamic limit of the so-called
supercell model, widely used in numerical simulations.Comment: Final version, to appear in Comm. Math. Phy
Non-perturbative embedding of local defects in crystalline materials
We present a new variational model for computing the electronic first-order
density matrix of a crystalline material in presence of a local defect. A
natural way to obtain variational discretizations of this model is to expand
the difference Q between the density matrix of the defective crystal and the
density matrix of the perfect crystal, in a basis of precomputed maximally
localized Wannier functions of the reference perfect crystal. This approach can
be used within any semi-empirical or Density Functional Theory framework.Comment: 13 pages, 4 figure
The increase of Binding Energy and Enhanced Binding in Non-Relativistic QED
We consider a Pauli-Fierz Hamiltonian for a particle coupled to a photon
field. We discuss the effects of the increase of the binding energy and
enhanced binding through coupling to a photon field, and prove that both
effects are the results of the existence of the ground state of the self-energy
operator with total momentum .Comment: 14 pages, Latex. Final version, accepted for publication in J. Math.
Phy
Ground State and Resonances in the Standard Model of Non-relativistic QED
We prove existence of a ground state and resonances in the standard model of
the non-relativistic quantum electro-dynamics (QED). To this end we introduce a
new canonical transformation of QED Hamiltonians and use the spectral
renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change
Structural Constraints Identified with Covariation Analysis in Ribosomal RNA
Covariation analysis is used to identify those positions with similar patterns of sequence variation in an alignment of RNA sequences. These constraints on the evolution of two positions are usually associated with a base pair in a helix. While mutual information (MI) has been used to accurately predict an RNA secondary structure and a few of its tertiary interactions, early studies revealed that phylogenetic event counting methods are more sensitive and provide extra confidence in the prediction of base pairs. We developed a novel and powerful phylogenetic events counting method (PEC) for quantifying positional covariation with the Gutell lab’s new RNA Comparative Analysis Database (rCAD). The PEC and MI-based methods each identify unique base pairs, and jointly identify many other base pairs. In total, both methods in combination with an N-best and helix-extension strategy identify the maximal number of base pairs. While covariation methods have effectively and accurately predicted RNAs secondary structure, only a few tertiary structure base pairs have been identified. Analysis presented herein and at the Gutell lab’s Comparative RNA Web (CRW) Site reveal that the majority of these latter base pairs do not covary with one another. However, covariation analysis does reveal a weaker although significant covariation between sets of nucleotides that are in proximity in the three-dimensional RNA structure. This reveals that covariation analysis identifies other types of structural constraints beyond the two nucleotides that form a base pair