49 research outputs found

    Generating Macroscopic Superpositions with Interacting Bose-Einstein Condensates: Multi-Mode Speed-Ups and Speed Limits

    Full text link
    We theoretically investigate the effect of multi-mode dynamics on the creation of macroscopic superposition states (spin-cat states) in Bose-Einstein condensates via one-axis twisting. A two-component Bose-Einstein condensate naturally realises an effective one-axis twisting interaction, under which an initially separable state will evolve toward a spin-cat state. However, the large evolution times necessary to realise these states is beyond the scope of current experiments. This evolution time is proportional to the degree of asymmetry in the relative scattering lengths of the system, which results in the following trade-off; faster evolution times are associated with an increase in multi-mode dynamics, and we find that generally multi-mode dynamics reduce the degree of entanglement present in the final state. However, we find that highly entangled cat-like states are still possible in the presence of significant multi-mode dynamics, and that these dynamics impose a speed-limit on the evolution such states

    Mean-field dynamics and Fisher information in matter wave interferometry

    Get PDF
    There has been considerable recent interest in the mean-field dynamics of various atom-interferometry schemes designed for precision sensing. In the field of quantum metrology, the standard tools for evaluating metrological sensitivity are the classical and quantum Fisher information. In this Letter, we show how these tools can be adapted to evaluate the sensitivity when the behavior is dominated by mean-field dynamics. As an example, we compare the behavior of four recent theoretical proposals for gyroscopes based on matter-wave interference in toroidally trapped geometries. We show that while the quantum Fisher information increases at different rates for the various schemes considered, in all cases it is consistent with the well-known Sagnac phase shift after the matter waves have traversed a closed path. However, we argue that the relevant metric for quantifying interferometric sensitivity is the classical Fisher information, which can vary considerably between the schemes

    A dynamic scheme for generating number squeezing in Bose-Einstein condensates through nonlinear interactions

    Get PDF
    We develop a scheme to generate number squeezing in a Bose-Einstein condensate by utilizing interference between two hyperfine levels and nonlinear atomic interactions. We describe the scheme using a multimode quantum field model and find agreement with a simple analytic model in certain regimes. We demonstrate that the scheme gives strong squeezing for realistic choices of parameters and atomic species. The number squeezing can result in noise well below the quantum limit, even if the initial noise on the system is classical and much greater than that of a poisson distribution.Comment: 4 pages, 3 figure

    Optimal and Robust Quantum Metrology Using Interaction-Based Readouts

    Full text link
    Useful quantum metrology requires nonclassical states with a high particle number and (close to) the optimal exploitation of the state's quantum correlations. Unfortunately, the single-particle detection resolution demanded by conventional protocols, such as spin squeezing via one-axis twisting, places severe limits on the particle number. Additionally, the challenge of finding optimal measurements (that saturate the quantum Cram{\'e}r-Rao bound) for an arbitrary nonclassical state limits most metrological protocols to only moderate levels of quantum enhancement. "Interaction-based readout" protocols have been shown to allow optimal interferometry \emph{or} to provide robustness against detection noise at the expense of optimality. In this Letter, we prove that one has great flexibility in constructing an optimal protocol, thereby allowing it to also be robust to detection noise. This requires the full probability distribution of outcomes in an optimal measurement basis, which is typically easily accessible and can be determined from specific criteria we provide. Additionally, we quantify the robustness of several classes of interaction-based readouts under realistic experimental constraints. We determine that optimal \emph{and} robust quantum metrology is achievable in current spin-squeezing experiments.Comment: 7 pages, 3 figure

    Quantum metrology with mixed states: when recovering lost information is better than never losing it

    Get PDF
    Quantum-enhanced metrology can be achieved by entangling a probe with an auxiliary system, passing the probe through an interferometer, and subsequently making measurements on both the probe and auxiliary system. Conceptually, this corresponds to performing metrology with the purification of a (mixed) probe state. We demonstrate via the quantum Fisher information how to design mixed states whose purifications are an excellent metrological resource. In particular, we give examples of mixed states with purifications that allow (near) Heisenberg-limited metrology and provide examples of entangling Hamiltonians that can generate these states. Finally, we present the optimal measurement and parameter-estimation procedure required to realize these sensitivities (i.e., that saturate the quantum Cramér-Rao bound). Since pure states of comparable metrological usefulness are typically challenging to generate, it may prove easier to use this approach of entanglement and measurement of an auxiliary system. An example where this may be the case is atom interferometry, where entanglement with optical systems is potentially easier to engineer than the atomic interactions required to produce nonclassical atomic states

    Improving cold-atom sensors with quantum entanglement: Prospects and challenges

    Full text link
    Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e. unentangled) atomic states. This Perspective piece asks the question: can entanglement usefully improve cold-atom sensors, in the sense that it gives new sensing capabilities unachievable with current state-of-the-art devices? We briefly review the state-of-the-art in precision cold-atom sensing, focussing on clocks and inertial sensors, identifying the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits. We survey demonstrated methods of generating metrologically-useful entanglement in cold-atom systems, note their relative strengths and weaknesses, and assess their prospects for near-to-medium term quantum-enhanced cold-atom sensing.Comment: Invited perspective; close to published version. Note the change in title. 19 pages, 7 figure

    A hybrid method of generating spin-squeezed states for quantum-enhanced atom interferometry

    Full text link
    We introduce a new spin-squeezing technique that is a hybrid of two well established spin-squeezing techniques, quantum nondemolition measurement (QND) and one-axis twisting (OAT). This hybrid method aims to improve spin-squeezing over what is currently achievable using QND and OAT. In practical situations, the strength of both the QND and OAT interactions is limited. We found that in these situations, the hybrid scheme performed considerably better than either OAT or QND used in isolation. As QND and OAT have both been realised experimentally, this technique could be implemented in current atom interferometry setups with only minor modifications to the experiment
    corecore