175 research outputs found

    Analysis of ball milling time to produce self-lubricating copper-tungsten disulfide composite: best trade-off between tribological performance and electrical properties

    Get PDF
    Ball milling is a fundamental step of powder metallurgy widely employed for composite manufacturing. This work focuses on the influence of ball milling time on the morphological, electrical, and tribological properties of self-lubricating copper-tungsten disulfide (Cu-WS2) composites. The study investigates ball milling times between 1 and 24 h to guarantee different degrees of incorporation of WS2 in the copper matrix. Micro-scratch and wear tests are performed to evaluate the tribological behavior. Optical, scanning electron, and confocal laser scanning microscopy analyze the scratch and wear tracks. The results show the reliability of the production process and a general improvement of the composites’ mechanical properties compared to pure copper. The addition of WS2 enhances the tribo-mechanical properties, increasing hardness and wear resistance and decreasing the friction coefficient. Shorter ball milling times result in larger WS2 flakes distributed in the copper matrix, while longer ball milling times result in smaller and more dispersed particles. This homogeneous fine dispersion determines a difference in the composites’ electrical conductivity and tribological performance, with shorter ball milling times (i.e., between 2 and 4 h) offering the best trade-off between wear behavior and electrical properties

    Evaluating the Accuracy of Imputation Methods in a Five-Way Admixed Population

    Get PDF
    Genotype imputation is a powerful tool for increasing statistical power in an association analysis. Meta-analysis of multiple study datasets also requires a substantial overlap of SNPs for a successful association analysis, which can be achieved by imputation. Quality of imputed datasets is largely dependent on the software used, as well as the reference populations chosen. The accuracy of imputation of available reference populations has not been tested for the five-way admixed South African Colored (SAC) population. In this study, imputation results obtained using three freely-accessible methods were evaluated for accuracy and quality. We show that the African Genome Resource is the best reference panel for imputation of missing genotypes in samples from the SAC population, implemented via the freely accessible Sanger Imputation Server

    High-stress abrasive wear characteristics of ultra-high strength press-hardening steel

    Get PDF
    Ultra-high strength steels are widely utilized in many applications operating in harsh abrasive wear conditions.For instance, the machineries used in mining and mineral handling or in agricultural sector require robust, but cost-effective wear-resistant materials. Steels provide excellent combination of mechanical properties and usability.This study encompasses mechanical and wear testing of an experimental medium-carbon press-hardening steel.The as-received material was austenitized at two different temperatures and quenched in water. Additionally, low-temperature tempering was applied for one variant. In total, three variants of the press-hardening steel were pro-duced. Microstructural characterization and mechanical testing were conducted for the steel samples. The weartesting was carried out with high-stress abrasive method, in which the samples were rotated inside a crushed gran-ite bed. A commercial 400 HB grade wear-resistant steel was included in the wear testing as a reference. The exper-imental steel showed very high mechanical properties reaching tensile strength up to 2600 MPa with hardness of750 HV10. Wear testing resulted in only minimal differences between the three variants indicating that the im-proved impact toughness by tempering did not significantly affect the wear resistance. The reference steel hadnearly two times greater mass loss compared to the higher hardness press-hardening steels. Microhardness meas-urements on the worn surface showed drastic increase in hardness for the deformed structure for all samples. Itwas concluded that even the high-hardness martensitic steels exhibit notable wear surface work-hardening. There-fore, hardness was determined to be the most significant factor affecting the wear performance of studied steels.publishedVersionPeer reviewe

    Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic <it>Erwinia pyrifoliae </it>exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of <it>Yersinia pestis</it>. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells.</p> <p>Results</p> <p>Pla and Epo expressed in <it>Escherichia coli </it>are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane ÎČ-strand had been changed.</p> <p>Conclusions</p> <p>We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial ÎČ-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens.</p

    Angiogenic gene expression and vascular density are reflected in ultrasonographic features of synovitis in early Rheumatoid Arthritis: an observational study.

    Get PDF
    INTRODUCTION: Neovascularization contributes to the development of sustained synovial inflammation in the early stages of Rheumatoid Arthritis. Ultrasound (US) provides an indirect method of assessing synovial blood flow and has been shown to correlate with clinical disease activity in patients with Rheumatoid Arthritis. This study examines the relationship of US determined synovitis with synovial vascularity, angiogenic/lymphangiogenic factors and cellular mediators of inflammation in a cohort of patients with early Rheumatoid Arthritis (RA) patients prior to therapeutic intervention with disease modifying therapy or corticosteroids. METHODS: An ultrasound guided synovial biopsy of the supra-patella pouch was performed in 12 patients with early RA prior to treatment. Clinical, US and biochemical assessments were undertaken prior to the procedure. Ultrasound images and histological samples were obtained from the supra-patella pouch. Histological samples were stained for Factor VIII and a-SMA (a-smooth muscle actin). Using digital imaging analysis a vascular area score was recorded. QT-PCR (quantitative-PCR) of samples provided quantification of angiogenic and lymphangiogenic gene expression and immunohistochemistry stained tissue was scored for macrophage, T cell and B cell infiltration using an existing semi-quantitative score. RESULTS: Power Doppler showed a good correlation with histological vascular area (Spearman r--0.73) and angiogenic factors such as vascular endothelial growth factor-A (VEGF-A), Angiopoietin 2 and Tie-2. In addition, lymphangiogenic factors such as VEGF-C and VEGF-R3 correlated well with US assessment of synovitis. A significant correlation was also found between power Doppler and synovial thickness, pro-inflammatory cytokines and sub-lining macrophage infiltrate. Within the supra-patella pouch there was no significant difference in US findings, gene expression or inflammatory cell infiltrate between any regions of synovium biopsied. CONCLUSION: Ultrasound assessment of synovial tissue faithfully reflects synovial vascularity. Both grey scale and power Doppler synovitis in early RA patients correlate with a pro-angiogenic and lymphangiogenic gene expression profile. In early RA both grey scale and power Doppler synovitis are associated with a pro-inflammatory cellular and cytokine profile providing considerable validity in its use as an objective assessment of synovial inflammation in clinical practice

    A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component. Males seem to be more affected than females and in most countries the TB notification rate is twice as high in males than in females. While socio-economic status, behavior and sex hormones influence the male bias they do not fully account for it. Males have only one copy of the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, specifically designed as a suitable platform for diverse and admixed populations. Association testing was done on the autosome (8,27,386 variants) and X chromosome (20,939 variants) in a sex stratified and combined manner. SNP association testing was not statistically significant using a stringent cut-off for significance but revealed likely candidate genes that warrant further investigation. A genome wide interaction analysis detected 16 significant interactions. Finally, the results highlight the importance of sex-stratified analysis as strong sex-specific effects were identified on both the autosome and X chromosome

    Multi-ancestry meta-analysis of host genetic susceptibility to tuberculosis identifies shared genetic architecture

    Get PDF
    The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7–29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure

    Effects of an 18-week exercise programme started early during breast cancer treatment: a randomised controlled trial

    Get PDF
    Background: Exercise started shortly after breast cancer diagnosis might prevent or diminish fatigue complaints. The Physical Activity during Cancer Treatment (PACT) study was designed to primarily examine the effects of an 18-week exercise intervention, offered in the daily clinical practice setting and starting within 6 weeks after diagnosis, on preventing an increase in fatigue. Methods: This multi-centre controlled trial randomly assigned 204 breast cancer patients to usual care (n = 102) or supervised aerobic and resistance exercise (n = 102). By design, all patients received chemotherapy between baseline and 18 weeks. Fatigue (i.e., primary outcome at 18 weeks), quality of life, anxiety, depression, and physical fitness were measured at 18 and 36 weeks. Results: Intention-to-treat mixed linear model analyses showed that physical fatigue increased significantly less during cancer treatment in the intervention group compared to control (mean between-group differences at 18 weeks: -1.3; 95 % CI -2.5 to -0.1; effect size -0.30). Results for general fatigue were comparable but did not reach statistical significance (-1.0, 95% CI -2.1; 0.1; effect size -0.23). At 18 weeks, submaximal cardiorespiratory fitness and several muscle strength tests (leg extension and flexion) were significantly higher in the intervention group compared to control, whereas peak oxygen uptake did not differ between groups. At 36 weeks these differences were no longer statistically significant. Quality of life outcomes favoured the exercise group but were not significantly different between groups. Conclusions: A supervised 18-week exercise programme offered early in routine care during adjuvant breast cancer treatment showed positive effects on physical fatigue, submaximal cardiorespiratory fitness, and muscle strength. Exercise early during treatment of breast cancer can be recommended. At 36 weeks, these effects were no longer statistically significant. This might have been caused by the control participants' high physical activity levels during follow-up

    Pharmacokinetic boosting of olaparib:A randomised, cross-over study (PROACTIVE-study)

    Get PDF
    Background: Pharmacokinetic (PK) boosting is the intentional use of a drug-drug interaction to enhance systemic drug exposure. PK boosting of olaparib, a CYP3A-substrate, has the potential to reduce PK variability and financial burden. The aim of this study was to investigate equivalence of a boosted, reduced dose of olaparib compared to the non-boosted standard dose. Methods: This cross-over, multicentre trial compared olaparib 300 mg twice daily (BID) with olaparib 100 mg BID boosted with the strong CYP3A-inhibitor cobicistat 150 mg BID. Patients were randomised to the standard therapy followed by the boosted therapy, or vice versa. After seven days of each therapy, dense PK sampling was performed for noncompartmental PK analysis. Equivalence was defined as a 90% Confidence Interval (CI) of the geometric mean ratio (GMR) of the boosted versus standard therapy area under the plasma concentration-time curve (AUC0–12 h) within no-effect boundaries. These boundaries were set at 0.57–1.25, based on previous pharmacokinetic studies with olaparib capsules and tablets. Results: Of 15 included patients, 12 were eligible for PK analysis. The GMR of the AUC0–12 h was 1.45 (90% CI 1.27–1.65). No grade ≄3 adverse events were reported during the study. Conclusions: Boosting a 100 mg BID olaparib dose with cobicistat increases olaparib exposure 1.45-fold, compared to the standard dose of 300 mg BID. Equivalence of the boosted olaparib was thus not established. Boosting remains a promising strategy to reduce the olaparib dose as cobicistat increases olaparib exposure Adequate tolerability of the boosted therapy with higher exposure should be established.</p
    • 

    corecore